

What is Anomaly Detection?

- Anomaly detection identifies features in the data that are inconsistent with a background only model
 - Requires the assumption that objects of interest are rare within the data set
 - AD algorithms work by uncovering the underlying structure of the data

Supervised Learning - Classification

Unsupervised Learning - Anomaly Detection

Which one is not like the others?

Why Anomaly Detection for Physics?

- Lack of recent new physics + many exclusion results -> incentive to develop a strong model independent search program
 - Don't guess what the signal looks like; look in the data to see what doesn't fit the background

- Application: hadronic jets
 - A jet is a narrow cone of hadrons created by the showering of a quark or gluon
 - Background jets are plentiful in data, but have a complex substructure
 - An AD algorithm can uncover this structure, and tag jets with unusual substructure

Autoencoders

 An autoencoder is a model which encodes input into lower dimensional latent space to pick out it's most salient features, and then decodes from latent space while checking for reconstruction errors

• If an object is more unusual within the data set, we expect it to have a larger reconstruction error

Autoencoders

 An autoencoder is a model which encodes input into lower dimensional latent space to pick out it's most salient features, and then decodes from latent space while checking for reconstruction errors

- If an object is more unusual within the data set, we expect it to have a larger reconstruction error
- A variational autoencoder encodes to a probability distribution in the latent space, which allows for Bayesian interference by sampling from this space

Variational Recurrent Neural Network

- Variational autoencoders are a fixed length architecture
 - To understand jet substructure, we want to look at jet constituents; variable length sequences

- Recurrent networks break data into a sequence of features (time steps)
- The input to each cell is a fixed length feature
- The hidden state is updated at each time step.
 This allowed the hidden state to store the long term representation of the data in the sequence
- Variational autoencoder + recurrent architecture =
 Variational Recurrent Neural Network (VRNN)

Y->XH: The First Use of Unsupervised Learning on ATLAS Data

- The $Y \rightarrow XH$ analysis searches for heavy resonances decaying into a Higgs boson and new particle X in a fully hadronic final state [CONF ICHEP 2022]
 - X and H are highly boosted and their decay products collimated
 - Reconstructed as 2 large jets in the final state
 - Fully data driven
- Y → XH analysis developed an unsupervised Variational Recurrent Neural Network as part of the search strategy, to tag unusual jets
 - VRNN produces an *anomaly score* (larger reconstruction error ⇔higher anomaly score); selects unusual jets
- The VRNN trained over the full Run-2 dataset

Results: Sensitivity to Many Signal Models!

- The represents the VRNN approach (no information about signal models known)
- The VRNN does just as well as specialized approaches for Y->XH signals, and offers an order of magnitude improvement for a highly unusual signals such as dark jets!

→ Model Independence ←

Questions?