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Outline
❑ A general view of ML and what it is all about

❑ Important stuff (loss, models, optimisation)

❑ Classics – artificial perceptron algorithm as the protoplast of 
all things

❑ Some cool models

❑ Selected (subjective) HEP solutions

❑ The biggest challenges for the future
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Setting the scene
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On a serious note …
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Setting the scene

… and not so serious
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ML: New revolution, a.k.a. electricity 2.0



ML: New revolution, a.k.a. electricity 2.0

❑We are living in interesting times – data come in abundance and ability to 
process them and gain knowledge is of great value: data is very precious
resource (like iron, gold or water)

❑We want to process the data fast and in a robust way

❑Machine Learning (ML), which is a part of data mining business, allows us to 
use computer algorithms to make sense of data or to turn them into knowledge

❑What is more exciting we have a lot of open source libraries that implements 
the most sophisticated algorithms on the market and they are free!

❑ Convergence of technologies made it possible!

6



Machine Learning – big picture
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https://lsaglobal.com/what-we-do/
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Cherry picking in ML orchard…
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Image captioning
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https://thinkautonomous.medium.com/rnns-in-computer-vision-image-captioning-597d5e1321d1

https://thinkautonomous.medium.com/rnns-in-computer-vision-image-captioning-597d5e1321d1


Paint me a picture…
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https://openai.com/dall-e-2/

https://openai.com/dall-e-2/


Paint me a picture…
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Paint me a picture…
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Talk to me…

14



Talk to me…

15https://blog.google/technology/ai/lamda/
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So, what is ML?

16

https://lsaglobal.com/what-we-do/


Learning algorithm

17

❑ For our purpose we define a learning algorithm (LA) as a 
composite entity comprising the following

❑ a data set, for which we search for patterns

❑ a model (for our discussion here, this will be represented by weights)

❑ an optimisation algorithm (a recipe to adjust/change weights)

❑ a loss function

❑ LA is able to learn based on the data that is „given” to it

❑ To be able to describe the learning process in quantitative way we define, 
on top of the previous notions, Experience, Class of Tasks and Performance 
Metric
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Learning algorithm
❑Having defined above the „actors”, we will say: a computer program learns on 
the basis of the experience gained in relation to the considered class of tasks 
and the quality metric, if the quality of performance increases (measured by 
the metric) with the experience gained... (Mitchell).

❑ That is, for example, if we have a classification task, its quality should increase 
when the model "sees" training data. More data – more experience.
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Algorytm uczący się – AL-U
❑ The need to create a new class of algorithms that learn stems from the fact 
that we are trying to solve a number of problems too complicated for a human 
programmer.

❑ Note! The execution of tasks by the algorithm is not related to learning!

❑ Learning is a way of acquiring skills to perform tasks

❑ The learning process therefore concerns the way LA processes events from the 
training set. Each event will be represented by a feature vector – random 
variables that were „measured/observed” during data collection

❑We will save each event (sample, instance) as  𝒙 ∈ ℝ𝑛: 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛



Task Classes
❑ Classification, 𝑓: ℝ𝑛 → 1,2,… , 𝑘 , y = f(𝒙) (label)

❑ Classification with missing features, 𝑓𝑖: ℝ
𝑛 → 1,2,… , 𝑘

❑ Regression, 𝑓: ℝ𝑛 →ℝ

❑ Transcription

❑ Anomaly detection

❑ Sampling (generative models), 𝑓:ℝ → ℝ𝑛

❑ Noise cancellation, ෩𝒙 → 𝒙: p 𝒙 ෩𝒙

❑ Estimation of p.d.f., 𝑝𝑀𝑜𝑑𝑒𝑙 𝒙 : ℝ𝑛 →ℝ
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Let’s start with…

22
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Artificial neuron or perceptron

❑ 1943 with McCullock-Pitts neuron 
model

❑ Motivated by biological studies

𝑧(𝑖) = 𝑤1𝑥1
(𝑖)
+ 𝑤2𝑥2

(𝑖)
+⋯+𝑤𝑘𝑥𝑘

𝑖
=

𝑗=1

𝑗=𝑘

𝑤𝑗𝑥𝑗
𝑖
= 𝑤𝑇 Ԧ𝑥(𝑖)

❑ Perceptron equation

𝜙 𝑧 = ቊ
+1 𝑖𝑓 𝑧 ≥ 𝜃
−1 𝑖𝑓 𝑧 < 𝜃

Predefined 
threshold

Adapted from „Python Machine 
Learning”, S. Raschka



The algorithm
❑The perceptron algorithm, then goes like that:

❑ Initialise the weights vector to 𝟎 or „something small”

❑ For each training data sample 𝒙(𝒊) do:

❑ Get the output value (class label) 𝒚(𝒊), using the unit step function

❑ Update the weights accordingly (update concerns all the weights in one 
go)

❑We can write

❑ The second formula is called perceptron learning rule, and the 𝜼 is called the 
learning rate (just a number between 0 and 1)

𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗

∆𝒘𝒋 = 𝜼 ∙ 𝒚(𝒊) − 𝒚(𝒊) ∙ 𝒙𝒋
(𝒊)
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Outcome
❑ For classification tasks we can provide an intuitive representation of the 
training outcome
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𝑥2

𝑥1

Adapted from „Python Machine 
Learning”, S. Raschka



„Magic” is here

26

❑ The idea of a binary classification can be understood using the following example: say, we 
have given 30 training samples – half of them is negative (noise) and half positive (signal)

❑ Our algorithm must learn a rule to separate these two classes and classify a new instance into 
one of these classes given values 𝑥1, 𝑥2
❑ This rule is also called decision boundary (black dashed line)

❑ 2D data set – each data 
instance has two values 
𝑥1, 𝑥2 associated with it

❑ Using them separately is going 
to yield poor results!

❑ Try to imagine we project the 
data on the respective axes



Dark ages…
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Non-linear differentiable functions
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How to start with ML in real world
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https://www.shutterstock.com/search/real-world
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Spinning the wheels
❑ The ability to learn must be measured quantitatively. Usually, the metric is 
related to the specifics of the task itself. Which immediately suggests that this is 
not an easy task!

❑ In the case of classification, we can, for example, use the loss function (we 
measure the stream of wrong decisions). But what to do in case of shape 
estimation or speech recognition? And regression?

❑ Choosing the right loss metric is one of the most difficult elements of the 
processing pipeline – take advantage of the experience of others or run you
own experiments!

❑ They can be designated for training sets as a "guide", but we are really 
interested in preserving metric performance for test sets!
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Experience (1)
❑ In general, algorithms can work in supervised mode or not – this applies to the 
way they "familiarize themselves" with the data

❑ The fundamental problem – how to "present" data to the algorithm? Features, 
selection of features and their preparation (feature engineering, e.g. change of 
variables, transf. coordinate system, etc.)

❑ „Iris data set” – Fisher 1936

ℱ =

𝑥1
(1)

𝑥2
(1)

𝑥1
(2)

𝑥2
(2)

𝑥3
(1)

𝑥4
(1)

𝑥3
(2)

𝑥4
(2)

.

.

.

.

.

.

𝑥1
(150)

𝑥2
(150)

.

.

.

.

.

.

𝑥3
(150)

𝑥4
(150)

❑ Features are placed in columns
❑ Events (instances) in rows
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Experience (2)

𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑛

(𝑖)
- one „event"

𝑥𝑗 =

𝑥𝑗
(1)

.

.

.

𝑥𝑗
(𝑚)

❑ Random vector (event)  Ԧ𝑥(𝑙) and 
label y

❑ Goal – to teach the algorithm of 
population distribution 𝑝 Ԧ𝑥

❑ Now we can predict 𝑝 𝑦| Ԧ𝑥
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Experience (3)

Trening

Application



Regression – reloaded (1) 
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❑ Let's replace the abstract definition of the learning algorithm with a concrete 
example of regression – a valuable model in the sense of developing intuition

❑ Regression problem: ℛ: ℝ𝑛 ∋ Ԧ𝑥 → 𝑦 ∈ ℝ, model response: ℳ Ԧ𝑥 = 𝑦, we 
can write explicitly: 𝒚 = 𝒘𝑻𝒙, 𝑤 ∈ ℝ𝑛

❑ Our task is defined by the „red equation”

❑ Now let's define the quality metric for the test set:

- Euclidean norm

𝑀𝑆𝐸𝑇𝑆 =
1

𝑚


𝑖/1

𝑖/𝑛
෨Ԧ𝑦(𝑇𝑆) − Ԧ𝑦(𝑇𝑆)

𝑖

2
=
1

𝑚
෨Ԧ𝑦(𝑇𝑆) − Ԧ𝑦(𝑇𝑆)

2

2

𝑥 2 = 𝑥1
2 + 𝑥2

2 + 𝑥𝑛
2

NOTE!
TrS – Training Set
TS – Test Set



Regression – reloaded (2) 
❑ The MSE metric – Mean Squared Error, we can interpret it as a quantity 
measuring distance in the Euclidean sense. If the prediction of the model 
matches the value of the label, the distance tends to zero, otherwise it 
increases.

❑ Processing pipeline sequence: how to design an optimizer that is based on 

the observation of a training set TrS: 𝑋(𝑇𝑟𝑆), 𝑌(𝑇𝑟𝑆) that will change the 
weights in such a way that it will reduce the MSE value

❑Minimize 𝑀𝑆𝐸(𝑇𝑟𝑆) (what is impact on 𝑀𝑆𝐸(𝑇𝑆)?)

❑ Formally:
𝛻𝑤 𝑀𝑆𝐸(𝑇𝑟𝑆) = 0

35



Regression – reloaded (3) 
❑ Step by step…

(1)

(2)

(3)

(4)

(5) 

𝛻𝑤 𝑀𝑆𝐸(𝑇𝑟𝑆) = 0 → 𝛻𝑤
1

𝑛
෨Ԧ𝑦(𝑇𝑟𝑆) − Ԧ𝑦(𝑇𝑟𝑆)

2

2
= 0

1

𝑛
𝛻𝑤 Ԧ𝑋(𝑇𝑟𝑆)𝑤 − Ԧ𝑦(𝑇𝑟𝑆)

2

2
= 0

𝛻𝑤 Ԧ𝑋(𝑇𝑟𝑆)𝑤 − Ԧ𝑦(𝑇𝑟𝑆)
𝑇

Ԧ𝑋(𝑇𝑟𝑆)𝑤 − Ԧ𝑦(𝑇𝑟𝑆)

𝛻𝑤 𝑤 𝑇 Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑋(𝑇𝑟𝑆)𝑤 − 2𝑤 𝑇 Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑦(𝑇𝑟𝑆) + Ԧ𝑦 𝑇𝑟𝑆 𝑇 Ԧ𝑦(𝑇𝑟𝑆) = 0

2 Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑋(𝑇𝑟𝑆)𝑤 − 2 Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑦 𝑇𝑟𝑆 = 0 → 𝑤 = Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑋(𝑇𝑟𝑆)
−1

Ԧ𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑦(𝑇𝑟𝑆)

36
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Regression – reloaded (4) 

❑What happened? Result: 𝑤 = 𝑋 𝑇𝑟𝑆 𝑇 𝑋(𝑇𝑟𝑆)
−1
𝑋 𝑇𝑟𝑆 𝑇 Ԧ𝑦(𝑇𝑟𝑆) we also call 

the system of normal equations 

❑ Optimal parameter values (for regression) are obtained analytically for 

the cost function defined as MSE: 𝑋(𝑇𝑟𝑆)𝑤 + Ԧ𝑦(𝑇𝑟𝑆)
𝑇
𝑋(𝑇𝑟𝑆)𝑤 + Ԧ𝑦(𝑇𝑟𝑆)

❑ Optimal parameters for the derivative of the cost function → 0

❑ Another cost function – another way to optimize!

❑ In this case, the analytical solution was possible, we usually use other 
methods such as the method of the fastest descent (gradient descent)
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Regression – reloaded (5) 
❑Our formula describing regression seems to be poorer by the free 
factor, a more general form (affine transformation)

❑

❑ Don't worry! You can always treat the vector 𝑤 as a so-called 
extended vector containing 𝑏 (professionally called the bias)

❑ In this case, we also expand the random vector by adding 1 (see 
also the lecture on training perceptron)

𝑦 = 𝑤 𝑇 𝑋 + 𝑏



Some advanced but necessary knowledge
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http://www.growingweisser.com/2016/09/22/overload-reorganize-your-thinking/


Loss function (I)
❑ In practice we need to have a very good handle on the performance of our 
model

❑ Or, in other words we need to have means to penalise the model if it 
performs poorly and reward if it does good

ℳ Ԧ𝑥 = 0

ℳ Ԧ𝑥 > 0 ℳ Ԧ𝑥 < 0Red points are 
misclassified ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =

1

𝑛


𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖

40



Loss function (II)
❑ Let’s create „an universal” formula for the loss function

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0The opposite
signs

The same 
signs

𝑦 ∙ℳ Ԧ𝑥

Max penalty
each time!

ℒ =
1

𝑛


𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0

41



Loss function (III)
❑ In theory such loss function is very powerfull, but in practice we cannot 
optimise such expression in any easy way and on top of this it has no 
sensitivity on how bad the decision was, i.e., each time the penalty is maximal

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0

Very bad
decision

Close to 
good

Close to bad

Very good
decision

𝑦 ∙ℳ Ԧ𝑥

ℒ

AdaBoost

LogReg

42



Loss function (IV)
❑ There are some tantalising facts regarding the loss function: the whole 
training process depends on the way we measure its performance – more 
aggressive approach may be more beneficial, it may determine how long the 
training process take and if it will be successful at all – how interesting

❑ Different loss functions determine upper limits w.r.t 1 𝑦∙ℳ Ԧ𝑥𝑖 <0
one: 

ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =
1

𝑛


𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖 =

1

𝑛


𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0

≤
1

𝑛


𝑖
𝑓ℳ 𝑦 ∙ℳ Ԧ𝑥𝑖

43



Over- and Under-fitting
❑ Regression with explicit weight determination algorithm (MSE)

❑ You can see that it's basically an optimization process..., is machine learning just an 
optimization problem? NO – the main difference is a generalization! 

❑ In the learning process, we minimize the training error, but what we really want is a 
minimal test error (generalization error). So we are interested in the expected value of 
the test error determined for any cases that were not "shown" to the model

❑

❑ It seems to be a real pickle... What is the relationship between these two quantities?

44

1

𝑚(𝑍𝑇𝑟)
෨Ԧ𝑦(𝑇𝑟𝑆) − Ԧ𝑦(𝑇𝑟𝑆)

2

2
→

1

𝑚(𝑍𝑇)
෨Ԧ𝑦(𝑇𝑆) − Ԧ𝑦(𝑇𝑆)

2

2
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Over- and Under-fitting
❑ The answer is found through statistical learning theory – data generating process: in short, we 
assume that we draw training and test sets from the same probability density distribution
𝑝𝐷𝑎𝑡𝑎 Ԧ𝑥, 𝑒

❑ From the point of view of statistics, we say that the training and test sets have identical 
distributions and each case in both sets is mutually independent of the other events

❑ So we have one data generating distribution for both sets.

❑ From this it follows that the expected value of the error for the test set must be the same as the 
expected value for the training set, e.g. 𝐸 𝑀𝑆𝐸𝑇𝑟𝑆

(𝑖)
= 𝐸 𝑀𝑆𝐸𝑇𝑆

(𝑖)

❑ And further, we can assume that there is such a set of parameters 𝑤 for which 𝑀𝑆𝐸𝑍𝑇𝑟
(𝑎)

=
𝑀𝑆𝐸𝑍𝑇

(𝑎)

❑ But, in practice, we act differently...
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Over- and Under-fitting
❑When learning in practice, we never proceed in this way: (1) set model parameters, (2) sample 
the training and test set

❑ Our typical pipeline: (1) sampling the training set, (2) determining the 𝑤 by minimizing the 
training error, (3) sampling the test set and determining the error

❑ The main "learning paradigm": get as little training error as possible and as little difference as 
possible between a training and a test errors gap

❑ The above considerations lead to two fundamental learning problems: over-fitting and under-
fitting of models – the complexity of models

❑ Too low complexity – problem with reproducing the TrS, too much complexity – the problem of 
over-matching (the model accurately reproduces the properties TrS but fails for TS)

❑ E.g. for a regression problem: 𝒚 = 𝒘𝒙 + 𝒃 → 𝒚 = 𝒘𝟏𝒙
𝟏 +𝒘𝟐𝒙

𝟐 +𝒘𝟑𝒙
𝟑 + 𝒃
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Optimal model
❑ Question: Is it possible to create an automatic procedure that looks for a model of optimal 
complexity, so that the training error and the generalization error are consistent with each other?

❑ The answer (in part) is provided by the statistical theory of learning and the Vapnik–
Chervonenkis theorem (VP-dimension)

❑ VP-dimension gives a quantitative measure of complexity for binary classifiers. VP-dimension is 
the largest possible set of elements of a test set that can be classified into different classes. 

❑ Unfortunately, practically using this method can be difficult! We can draw the following 
conclusions instead. There should be a number that limits from above the possible difference 
between a training error and a test error. This number increases as the complexity of the model 
increases and decreases for larger sets.

❑ For example, a "generalization gap" (the difference between a training error and a generalization
one) can be determined. When it reaches the minimum, we have a model of optimal complexity.
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„No-free-lunch” theorem
❑ This theorem was formulated by Wolpert and concerns the universality of learning 
algorithms.

❑ We can consider the following problem: is there the best algorithm that can always beat 
other algorithms when performing a certain task? Otherwise, what happens when we 
consider all possible distributions that generate data?

❑ It turns out that every learning algorithm will have a similar stream of errors when 
classifying new, previously unanalyzed events!! The NFL theorem can also be interpreted 
that any algorithm will be characterized by a classification quality that means assigning all 
points to the same class.

❑ To put it another way: there are no universal algorithms, but for a certain specific class 
of distributions we can find models that will reach a very good classification quality.
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Regularization
❑ Let's assume that our learning algorithm has a space of hypotheses consisting of different types 
of polynomials. There is a method that allows us to some extent to "guide" an algorithm to a 
particular type of function.

❑ In practice, this is done by modifying the loss function by adding a component controlled by a 
parameter that we tune before starting the training.

❑ For example, for our regression problem we can write down: ℒ′ = 𝑀𝑆𝐸𝑇𝑟𝑆 + 𝑓 𝜆

❑ Both the form of the f function and its meaning can be different (e.g. Ridge type regularization, 
Lasso type regularization, weight loss technique, dropout, etc.)

❑ For example: 𝓛′ = 𝑴𝑺𝑬𝑻𝒓𝑺 + 𝝀𝒘𝑻𝒘 (weight decay technique). The effect of such a modification 
will be: in the case of large values 𝜆, weights (polynomial parameters) will tend to take small 
values, for 𝜆 with intermediate values, the values of the weights will grow, ...



Cool ones
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https://getcoolstuff.com/


GAN – Generative Adversarial Networks
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GAN – Generative Adversarial Networks

52



GAN optimisation rules
❑ Let set 𝒢 and 𝒟 to represent the generator and discriminator models respectively, the 
performance function is 𝒱. The optimisation objective can be written as follow:

❑ Here: Ԧ𝑥 - real samples, Ԧ𝑥∗ = 𝒢 𝑧 - generated samples (𝑧 represents noise), 𝔼 Ԧ𝑥 𝑓 is the 
average value of any function over the sample space

❑Model 𝒟 should maximise the „good” prediction for the real sample - we are looking for the 
max – gradient ascent update rule

❑Model 𝒢 must trick the discriminator, thus, it minimise the 1 − 𝒟 Ԧ𝑥∗ = 1 − 𝒟 𝒢 𝑧

min
𝒢

max
𝒟

𝒱 𝒟, 𝒢 = 𝔼 Ԧ𝑥 𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝔼 Ԧ𝑥∗ 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒟 ← Ԧ𝜃𝒟 + 𝑟 ∙
1

𝑚
𝛻
𝜃𝒟


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒢 ← Ԧ𝜃𝒢 − 𝑟 ∙
1

𝑚
𝛻
𝜃𝒢


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗



ML GEMS (I) - GANs
https://syncedreview.com/2019/02/09/nvidia-open-sources-hyper-realistic-face-generator-
stylegan/
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CycleGAN

55



WGAN – Wasserstein GAN
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Optimal transport – aka W-distance

57Improving Generative Adversarial Network (GAN), Hung-yi Lee



Autoencoders
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Decision trees

59
Christian Böser, Simon Fink, Steffen Röcker
Institut für Experimentelle Kernphysik, KIT



HEP landscape
❑ BDT models for binary classification of events – online trigger systems, offline 
selections

❑ ANN models – PID enhancements (crucial for flavour physics, precise 
measurements), P.D.F. reconstruction

❑ Generative models based on GANs and Autoencoders – event generators, data 
augmentation

❑ A comprehensive repository regarding current status: https://iml-
wg.github.io/HEPML-LivingReview/ (A Living Review of Machine Learning for 
Particle Physics)

60

https://iml-wg.github.io/HEPML-LivingReview/


HEP landscape
❑ Very interesting overview: „Machine Learning in High Energy Physics Community White 
Paper” (https://arxiv.org/abs/1807.02876)

❑ Challenges of learning Standard Model

❑ Speeding simulation via generative models

❑ Computing resources and sustainability

❑ Engaging commercial partners (new LHCb trigger based on GPU processors)

❑ Interpretability of models

❑ Uncertainty of predictions (just beginning this large subject)
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https://arxiv.org/abs/1807.02876


HEP landscape
❑ „Generative Networks for LHC events” (https://arxiv.org/abs/2008.08558)

❑ Physics specific challenges: phase-space integration, conservation of 4-
momentum

❑ Parton shower and matrix elements modelling

❑ CycleGANs for understanding the patron showers
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LHCb Trigger (Run 2)

63https://doi.org/10.1016/j.cpc.2016.07.022, Tesla: An application for real-time data analysis in High Energy Physics

Long-lived tracking in HLT using XGBoost algoritym

Adam Dendek LHCb Thesis
http://cds.cern.ch/record/2772792?ln=en

https://doi.org/10.1016/j.cpc.2016.07.022
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Readout electronics response with ANN

Simulation and Optimization Studies of the LHCb Beetle Readout ASIC and Machine Learning 
Approach for Pulse Shape Reconstruction, DOI: 10.3390/s21186075

https://doi.org/10.3390/s21186075


Predicting the future for HEP
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❑HEP challenges are definitely closely coupled with the recent trends in 
ML

❑ Use more sustainable code (share/use the latest and greatest)

❑ Interpretability – critical especially for selection algorithms (SHAP and 
LIME)

❑ Prediction error – when looking for New Physics we should now it!

❑ Use latest hardware developments – GPU clusters, tensor cores, 
hardware ANN

❑More models!



The greatest challenges for ML
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❑ One of the most hot topics of ML – understand the uncertainties

❑ At the moment we do not have such powerful tools as Statistics 
wields (confidence interval, for instance)

❑ Interpretability is one way to tackle this problem, but it is just the 
beginning



The greatest challenges for ML
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❑ML and more generally AI can do a lot of good for human kind but 
it can also be a real danger

❑ML does not do things as we do, but we can bias it and teach it to 
hate, have racial prejudice or become a religious fanatic

❑ So, we need to mind ethics for the future of ML and AI, especially 
taking into account how ubiquitous it is now

❑ Anyway, the future at best is uncertain and we need to understand 
this problem before it is too late…



Thanks! Hope you like it and you get inspired!
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BACKUP
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A simple one



A simple one



Visualisation please!



Be a responsible punisher …


