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DATA ANALYSIS



1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation and Confidence intervals
4) Hypothesis testing and p-value
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INTRODUCTION TO DATA ANALYSIS



EVENT DISTRIBUTION 4

๏Does the observed data 
agree with our expectations 
from the Standard Model?



EVENT DISTRIBUTION 5

๏We can not tell until we can 
compare to the expected 
distribution

๏Is there any place on where 
data does not agree with 
the expectation? Where? 
How significant?



EVENT DISTRIBUTION 6

๏When can we tell that we 
have discovered something 
new?

๏Can we ever be 100% 
sure?



WHAT IS DATA ANALYSIS? 7

“Data analysis is a process for obtaining raw data and converting it into 
information useful for decision-making by users. Data are collected and 
analyzed to answer questions, test hypotheses or disprove theories.” 

RAW DATA DATA ANALYSIS USABLE INFORMATION

๏ Data analysis uses statistics for presentation and interpretation (explanation) 
of data

๏ A mathematical foundation for statistics is the probability theory



DATA ANALYSIS IN THE INDUSTRY 8

RAW DATA DATA ANALYSIS USABLE INFORMATION

(search string1,location1)user 1 
(search string2,location2)user 1 

… 

(search stringn,locationn)user 1 

(search string1,location1)user 2 

… 
(search stringm,locationm)user 2 

(search string1,location1)user 3 
… 

(search string1,location1)user k 

… 

Maximum Likelihood fit 
Significance 

Hypothesis testing 
P-value 

Neural Networks
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RAW DATA DATA ANALYSIS USABLE INFORMATION

(px1,py1,pz1,E1)event 1 
(px2,py2,pz2,E2)event 1 

… 

(pxn,pyn,pzn,En)event 1 

(px1,py1,pz1,E1)event 2 

… 
(pxm,pym,pzm,Em)event 2 

(px1,py1,pz1,E1)event 3 
… 

(px1,py1,pz1,E1)event k 

… 
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Figure 13: (Left) Results of likelihood scans for the signal-strength modifiers corresponding to
the main SM Higgs boson production modes, compared to the combined µ shown as a vertical
line. The horizontal bars and the filled band indicate the ± 1s uncertainties. The uncertainties
include both statistical and systematic sources. (Right) Result of the 2D likelihood scan for the
µggH, ttH,bb̄H,tH and µVBF,VH signal-strength modifiers. The solid and dashed contours show the
68% and 95% CL regions, respectively. The cross indicates the best-fit value, and the diamond
represents the expected value for the SM Higgs boson.

10.2 Simplified template cross section

We also present the results for STXS, a measurement strategy detailed in the CERN Yellow
Report 4 of the LHC-HXSWG [24]. The Stage 0 Bins correspond to the H boson production
mechanisms. The previous Run 2 analysis has reported the measured Stage 0 results [15]. With
full Run 2 data, this analysis targets the finer Stage 1.1 Bins. The theoretical uncertainties on the
overall signal cross sections are removed, while the theoretical uncertainties which can cause
migration of events between the various categories are kept in this measurement.

The measured cross sections, normalized to the SM prediction are shown in Fig. 14 for Stage
0 and in Fig. 15 for Stage 1.1. The correlation matrix for Stage 1.1 is shown in Fig. 16. The
dominant experimental sources of systematic uncertainty are the same as in the measurement
of the signal strength, while the dominant theoretical source is the uncertainty in the category
migration for the ggH process.

10.3 Fiducial cross section

In this section the measurement of the cross section for the production and decay pp ! H ! 4`
within a fiducial volume defined to match closely the reconstruction level selection is pre-
sented. This measurement has minimal dependence on the assumptions of the relative fraction
or kinematic distributions of the separate production modes. The definition of the fiducial vol-
ume is very similar to the definition used in Ref. [21]. The differences with respect to Ref. [21]
are that leptons are defined as “dressed” leptons, as opposed to produced bare leptons, and
the lepton isolation criteria is updated to match the reconstruction level selection. Leptons are
“dressed” by adding the four-momenta of photons within DR < 0.3 to the bare leptons, and
leptons are considered isolated if the sum of scalar pT of all stable particles within DR < 0.3
from the lepton is less than 0.35 · pT. In order to reduce the experimental uncertainties, jets with
pT > 30 GeV and |h| < 2.5 are considered for the differential cross sections related to jet ob-

Maximum Likelihood fit 
Significance 

Hypothesis testing 
P-value 

Neural Networks



๏ Main goals are:
๏ estimate (measure) the parameters
๏ quantify the uncertainty of the parameter estimates
๏ test the extent to which the predictions of a theory are in agreement with the data

๏ Use of statistics for presentation and interpretation (explanation) of data

๏ A mathematical foundation for statistics is the probability theory 

๏ Why is statistics even needed?
๏ theory predictions in quantum mechanics are not deterministic
๏ finite size of data sample
๏ imperfection of the measurement

DATA ANALYSIS IN HEP 10



DATA ANALYSIS GENERAL PICTURE 11

1

Physical  
phenomena 

Described by a theory

EXPERIMENT

Sampling reality
2

3
Data sample 
x = (x1,x2,…,xN) 

x is a multivariate random 
variable

5 Results 
๏ parameter estimates 
๏ confidence limits 
๏ hypothesis tests

4

ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



Mathematical (axiomatic) definition

Classical definition

Frequentist definition

Bayesian (subjective) definition

PROBABILITY DEFINITION 12

“Unfortunately, statisticians do not agree on basic principles.” 
- Fred James

What is probability anyway?



๏ Developed in 1933 by Kolmogovor in his “Foundations of the Theory of 
Probability”

๏ Define an exclusive set of all possible elementary events xi
๏ Exclusive means the occurrence of one of them implies that none of the others occurs

๏ For every event xi, there is a probability P(xi) which is a real number satisfying 
the Kolmogorov Axioms of Probability:
I)
II)
III)

๏ From these properties more complex probability expressions can be deduced 
๏ For non-elementary events, i.e. set of elementary events
๏ For non-exclusive events, i.e. overlapping sets of elementary events

๏ Entirely free of meaning, does not tell what probability is about 

P(xi) ≥ 0
P(xi or xj) = P(xi) + P(xj)

∑ P(xi) = 1

MATHEMATICAL DEFINITION 13



CLASSICAL DEFINITION 14

“The theory of chance consists in reducing all the 
events of the same kind to a certain number of cases 
equally possible, that is to say, to such as we may be 
equally undecided about in regard to their existence, 
and in determining the number of cases favourable 
to the event whose probability is sought. The ratio of 
this number to that of all the cases possible is the 
measure of this probability, which is thus simply a 
fraction whose numerator is the number of favourable 
cases and whose denominator is the number of all 
the cases possible.” 
- Pierre-Simon Laplace, 
A Philosophical Essay on Probabilities 



๏ Experiment performed N times, outcome x occurs N(x) times 

๏ Define probability: 

๏ Such a probability has big restrictions:
๏ depends on the sample, not just a property of the event 
๏ experiment must be repeatable under identical conditions 
๏ For example one can’t define a probability that it’ll snow tomorrow

๏ Probably the one you’re implicitly using in everyday life

๏ Frequentist statistics is often associated with the names of Jerzy Neyman and 
Egon Pearson

FREQUENTIST DEFINITION 15

P(x) = lim
N→∞

N(x)
N



๏ Define probability: P(x) = degree of belief that x is true

๏ It can be quantified with betting odds: 
๏ What’s amount of money one‘s willing to bet based on their belief on the future occurrence of 

the event

๏ In particle physics frequency interpretation often most useful, but Bayesian 
probability can provide more natural treatment of non-repeatable phenomena 

BAYESIAN DEFINITION 16



๏ Define conditional probability: P(A|B) = P(A⋂B)/P(B)
๏ probability of A happening given B happened
๏ for independent events P(A|B) = P(A), hence P(A⋂B)=P(A)P(B)

๏ From the definition of conditional probability Bayes’ theorem states:

๏ T is a theory and D is the data
๏ P(T)  is the prior probability of T: the probability that T  is correct before the data D was 

seen
๏ P(D|T) is the conditional probability of seeing the data D given that the theory T is true. 

๏ P(D|T) is called the likelihood.
๏ P(D) is the marginal probability of D.

๏ P(D) is the prior probability of witnessing the data D under all possible theories 
๏ P(T|D)  is the posterior probability: the probability that the theory is true, given the data 

and the previous state of belief about the theory

BAYES’ THEOREM 17

P(T |D) =
P(D |T)P(T)

P(D)



๏ You meet an old friend in a pub. He proposes that the next round should be 
payed by whoever of the two extracts the card of lower value from a pack of 
cards

๏ This situation happens many times in the following days. What is the probability 
that your friend cheats if you end up paying wins consecutive times?*

๏ You assume:
๏ P(cheat) = 5% and P(honest) = 95% (surely an old friend is an unlikely cheater…)
๏ P(wins | cheat) = 1 and P(wins | honest) = 2-wins

๏ Bayesian solution:

EXAMPLE 18

*taken from G.D’Agostini, Bayesian Reasoning in HEP, Principles and Applications, CERN-99-03, 1999

P(cheat |wins) =
P(wins |cheat)P(cheat)

P(wins |cheat)P(cheat) + P(wins |honest)P(honest)

P(cheat |0) =
1 ⋅ P(cheat)

1 ⋅ P(cheat) + 2−0P(honest)
=

0.05
0.05 + 0.95

= 5 %

P(cheat |5) =
1 ⋅ P(cheat)

1 ⋅ P(cheat) + 2−5P(honest)
=

0.05
0.05 + 0.03

= 63 %



๏ The process of updating the probability when new experimental data becomes 
available can be follow easily if we insert
๏ P(cheat) = P(cheat | wins-1) and P(honest) = P(honest | wins -1), where wins - 1 indicates the 

probability assigned after the previous win
๏ P(wins=1 | cheat) = P(win | cheat) = 1  and  P(wins = 1 | honest) = 0.5

๏ Iterative application of the Bayes’ formula:

LEARNING BY EXPERIENCE 19

P(cheat |wins) =
P(win |cheat)P(cheat |wins − 1)

P(win |cheat)P(cheat |wins − 1) + P(win |honest)P(honest |wins − 1)

P(cheat |wins) =
P(cheat |wins − 1)

P(cheat |wins − 1) + 0.5 * P(honest |wins − 1)

P(cheat) P(cheat | wins)
% wins=5 wins=10 wins=15
1 24% 91% 99.7%
5 63% 98% 99.94%

50 97% 99.9% 99.99%

When you learn from the experience,
your conclusion does not longer depend
on the initial assumptions!



๏ Random event is an event having more than one possible outcome
๏ Each outcome may have associated probability
๏ Outcome not predictable, only the probabilities known

๏ Different possible outcomes may take different possible numerical values x1, 
x2, ...  

๏ The corresponding probabilities P(x1), P(x2), ... form a probability 
distribution

๏ If observations are independent the distribution of each random variable is 
unaffected by knowledge of any other observation 

๏ When an experiment consists of N repeated observations of the same random 
variable x, this can be considered as the single observation of a random vector 
x, with components x1, x2, …, xN

RANDOM VARIABLES 20



๏ Rolling a die:
๏ Sample space = {1,2,3,4,5,6}
๏ Random variable x is the number rolled

๏ Discrete probability distribution:

DISCRETE RANDOM VARIABLES 21

P(x)

x



๏ A spinner:
๏ Can choose a real number from [0,2n]
๏ All values equally likely
๏ x = the number spun
๏ Probability to select any real number = 0
๏ Probability to select any range of values > 0

๏ Probability to choose a number in [0,n] = 1/2
๏ Probability to select a number from any range Δx is Δx/2n
๏ Now we say that probability density p(x) of x is 1/2n  

๏ More general:

CONTINUOUS RANDOM VARIABLES 22

P(A < x < B) = ∫
B

A
p(x)dx


