## DATA ANALYSIS

Toni Šćulac
Faculty of Science, University of Split, Croatia
CERN School of Computing 2022, Krakow, Poland

## LECTURES OUTLINE

1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation and Confidence intervals
4) Hypothesis testing and $p$-value

## PARAMETER ESTIMATION AND CONFIDENCE INTERVALS

## GENERAL PICTURE REMINDER




Described by PDFs,
depending on unknown parameters with true values
$\theta^{\text {true }}=\left(m_{H}{ }^{\text {true }}, \Gamma_{H}\right.$ true $\left., \ldots, \sigma^{\text {true }}\right)$

- The parameters of a PDF are constants that characterise its shape:

$$
f(x ; \theta)=\frac{1}{\theta} e^{-\frac{x}{\theta}}
$$

- where x is measured data, and $\theta$ are parameters that we are trying to estimate (measure)
- Suppose we have a sample of observed values $\vec{x}=\left(x_{1}, x_{1}, \cdots, x_{n}\right)$
- Our goal is to find some function of the data to estimate the parameter(s)
- we write the parameter estimator with a hat $\hat{\theta}(\vec{x})$
- we usually call the procedure of estimating parameter(s): parameter fitting


## EXAMPLE - PARAMETER ESTIMATION

- Task: find the average height of all students in a university on the basis of an (honestly selected) sample of N students
- Some possible ways of getting the result:

1) Add up all the heights and divide by N
2) Add up the first 10 heights and divide by 10. Ignore the rest
3) Add up all the heights and divide by N-1
4) Throw away the data and give the answer as 1.8 m
5) Multiply all the heights and take the N-th root
6) Choose the most popular height (the mode)
7) Add up the tallest and shortest height and divide by 2
8) Add up the second, fourth, etc. and divide by $N / 2$ for $N$ even or by ( $\mathrm{N}-1$ )/2 for N odd

## PROPERTIES OF A GOOD ESTIMATOR

## © Consistent

- Estimate converges to the true value as amount of data increases

$$
\hat{\theta} \xrightarrow{\text { more }} \stackrel{\text { data }}{ } \theta^{\text {true }}
$$

- Unbiased
- Bias is the difference between expected value of the estimator and the true value of the parameter
- Efficient
- Its variance is small
- Robust
- Insensitive to departures from assumptions in the PDF



## EXAMPLE IN HEP - HISTOGRAM FITTING

- In counting experiments we usually represent data in histograms
- In the following example we will study a particle mass histogram


Root:
histo->Draw();

## EXAMPLE IN HEP - HISTOGRAM FITTING

- Measured values have statistical uncertainties so it is better to represent them with points and error bars
- each bin has a Poisson uncertainty


Root:
histo->Draw("ep");

## EXAMPLE IN HEP - HISTOGRAM FITTING

- Therefore we have
© a set of precisely known values $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ - histograms bins
- At each $\mathrm{Xi}_{\mathrm{i}}$

○ a measured value $y_{i}$ - number of events in a given bin

- a corresponding error on measured value $\sigma_{i}$
- We are missing a theoretical PDF $f\left(x_{i} ; \theta^{\text {true }}\right)$ with true parameters $\theta^{\text {true }}$ so we can calculate parameter estimator $\hat{\theta}$


$$
\begin{aligned}
B W(x ; D, \Gamma, M) & \approx \frac{D \Gamma}{\left(x^{2}-M^{2}\right)^{2}+0.25 \Gamma^{2}} \\
Q(x ; A, B, C) & =A+B x+C x^{2}
\end{aligned}
$$

## EXAMPLE IN HEP - HISTOGRAM FITTING

$f\left(x_{i}, \theta^{\text {true }}\right)=f\left(x_{i} ; D, \Gamma, M, A, B, C\right)=B W\left(x_{i} ; D, \Gamma, M\right)+Q\left(x_{i} ; A, B, C\right)$


## EXAMPLE IN HEP - HISTOGRAM FITTING




© Be careful: statistic is not statisticS!

- Any new random variable (f.g. T), defined as a function of a measured sample x is called a statistic $T=T\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- For example, the sample mean $\bar{x}=\frac{1}{N} \sum x_{i}$ is a statistic!
- A statistic used to estimate a parameter is called an estimator
- For instance, the sample mean is a statistic and an estimator for the population mean, which is an unknown parameter
- Estimator is a function of the data
- Estimate, a value of estimator, is our "best" guess for the true value of parameter
- Some other example of statistics (plural of statistic!): sample median, variance, standard deviation, t-statistic, chi-square statistic, kurtosis, skewness, ...


## HOW TO FIND A GOOD ESTIMATOR?

## THE MAXIMUM LIKELHOOD METHOD

- Gives consistent and asymptotically unbiased estimators
- Widely used in practice


## THE LEAST SQUARES (CH-SQUARE) METHOD

- Gives consistent estimator
- Linear Chi-Square estimator is unbiased
- Frequently used in histogram fitting


## THE METHOD OF MOMENTS

- Gives consistent and asymptotically unbiased estimators
- Not as efficient as the Maximum Likelihood method
- Assume that observations (events) are independent
- With the PDF depending on parameters $\theta: f\left(x_{i} ; \theta\right)$
- The probability that all $\mathbf{N}$ events will happen is a product of all single events probabilities:
- $P(x ; \theta)=P\left(x_{1} ; \theta\right) P\left(x_{2} ; \theta\right) \cdots P\left(x_{N} ; \theta\right)=\prod P\left(x_{i} ; \theta\right)$
- When the variable $\mathbf{x}$ is replaced by the observed data $\mathbf{x}^{\mathrm{OBS}}$, then P is no longer a PDF
- It is usual to denote it by $L$ and called $L\left(x^{O B S} ; \theta\right)$ the likelihood function
- Which is now a function of $\theta$ only $L(\theta)=P\left(x^{\mathrm{OBS}} ; \theta\right)$
- Often in the literature, it's convenient to keep X as a variable and continue to use notation $\mathrm{L}(\mathrm{X} ; \theta)$
- The probability that all N independent events will happen is given by the likelihood function $L(x ; \theta)=\prod f\left(x_{i} ; \theta\right)$
- The principle of maximum likelihood (ML) says: The maximum likelihood estimator $\hat{\theta}$ is the value of $\theta$ for which the likelihood is a maximum!
- In words of R. J. Barlow: "You determine the value of $\theta$ that makes the probability of the actual results obtained, $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right\}$, as large as it can possible be."
- In practice it's easier to maximize the log-likelihood function
$\ln L(x ; \theta)=\sum \ln f\left(x_{i} ; \theta\right)$
For p parameters we get a set of p likelihood equations: $\frac{\partial \ln L(x ; \theta)}{\partial \theta_{j}}=0$
- It is often more convenient the minimise -InL or -2InL
- Consider the lifetime pdf $f(t ; \tau)=\frac{1}{\tau} e^{\left(-\frac{t}{\tau}\right)}$
- Suppose we have measured data $\mathrm{t}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{N}}\right)$
- Our likelihood function is defined as $L(\tau)=\prod f\left(t_{i} ; \tau\right)$
- The value of $\tau$ for which $L(\tau)$ is maximum also gives the maximum value of its log-likelihood function $\ln L(\tau)=\sum \ln f\left(t_{i} ; \tau\right)=\sum\left(\ln \frac{1}{\tau}-\frac{t_{i}}{\tau}\right)$
- Solving one likelihood equation $\frac{\partial \ln L(\tau)}{\partial \tau}=0$ gives $\hat{\tau}=\frac{1}{N} \sum t_{i}$
- Try generating 100 Monte Carlo toys for $\tau=1$ and estimating $\hat{\tau}$ using the ML method


## PROPERTIES OF THE ML ESTIMATOR

- ML estimator is consistent
- ML estimate is approximately unbiased and efficient for large samples
- Usually biased for small samples

○ ML estimate is invariant

- A transformation of parameter won't change the answer
- Keep in mind that invariance comes at the cost of a bias!
- Extra care to be taken when the best value of parameters are near imposed limits
- ML estimate is not the most likely value of parameter; it is the estimate that makes your data the most likely!
- What was presented up to now is sometimes called the unbinned maximum likelihood
- ML has many advantages, but a few drawbacks too
- In Bayesian statistics, both $\theta$ and $x$ are random variables
- We want to know the conditional PDF for $\theta$ given the data $x$ :

$$
p(\theta \mid x)=\frac{L(x \mid \theta) \pi(\theta)}{\int L\left(x \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) d \theta^{\prime}}
$$

- where $\pi(\theta)$ is the prior probability density for $\theta$, reflecting the stage of knowledge of $\theta$ before measuring the data $x$
- If we choose "prior ignorance" $\pi(\theta)=$ const, then $\hat{\theta}_{\text {Bayes }}=\hat{\theta}_{M L}$
- No golden rule on how to define $\pi(\theta)$
- In Bayesian statistics all our knowledge about $\theta$ is in $p(\theta \mid x)$
- It is often a very complicated multidimensional function that is hard to report
- Summarised using an estimator $\hat{\theta}_{\text {Bayes }}$ which is often defined as the mode of $p(\theta \mid x)$


## MAXIMUM LIKELIHOOD - SUMMARY

- Likelihood function $(L)$ is constructed by replacing the variable x by the observed data in a product of single events probabilities
- Maximising (minimising) the $\ln L(-2 \ln L)$ function gives the parameter estimate $\hat{\theta}_{M L}$
- $\hat{\theta}_{M L}$ does not mean that the estimate is the "most likely" value of $\theta$, it is the value that makes your data most likely
- ML estimate is unbiased and efficient for large samples, be careful if you want to use it for small samples
- ML can be used to fit binned data
- ML can be extended to deal with the case where the number of expected events is not a fixed number but a random number
- Suppose you have a set of precisely known (without error) values $x\left(x_{1}, \ldots, x_{N}\right)$ with a corresponding set of measured values $y\left(y_{1}, \ldots, y_{N}\right)$ with corresponding uncertainties $\sigma\left(\sigma_{1}, \ldots, \sigma_{N}\right)$
- For example $x_{i}$ histogram mass bins with $y_{i}$ events with Poissonian uncertainty $\sigma_{i}$
- Suppose you also know a function $f(x ; \theta)$ which predicts the value of $y_{i}$ for any $x_{i}$. It depends on an unknown parameter $\theta$, which you are trying to determine.
- In our example function $f(x ; \theta)$ would be theoretical prediction for number of events at a given mass
- To find best estimate of $\theta$ we minimise the suitably weighted sum of squared differences between measured and predicted values, the so called "least squares" or "chi-square":

$$
\chi^{2}(\theta)=\sum_{i=1}^{N} \frac{\left(y_{i}-f\left(x_{i} ; \theta\right)\right)^{2}}{\sigma_{i}^{2}}
$$

- Estimator is found by finding the value which minimises $\chi^{2}: \frac{\partial \chi^{2}}{\partial \theta}=0$
- The quantity $\chi^{2}=\sum_{i=1}^{N} \frac{\left(y_{i}^{\text {data }}-y_{i}^{\text {ideal }}\right)^{2}}{(\text { expected error })^{2}}$ gives information about the fit quality

| small $\chi^{\mathbf{2}}$ | large $\chi^{\mathbf{2}}$ |
| :---: | :---: |
| good fit | bad fit (bad model) |
| overestimated errors | underestimated errors |

- Since $\left\langle\chi^{2}\right\rangle=N$, easy way to estimate the fit quality is to check if



## CHI-SQUARE FIT TEST - EXAMPLE

Reconstructed four lepton invariant mass


Reconstructed four lepton invariant mass


## LINEAR LEAST SQUARES FIT

- LS has particularly desirable properties if $f(x ; \theta)$ is a linear function of $\theta$ : $f(x ; \theta)=\sum_{j=1}^{m} a_{j}(x) \theta_{j}$, where $a_{j}(x)$ are linearly independent functions of x
- estimators and their variances can be found analytically
- the estimators have zero bias and minimum variance



## POLYNOMIAL LEAST SQUARES FIT

- Assume we measure 5 values of a quantity $y$, measured with errors $\sigma_{y}$ at different values of $x$
- For the fit function we try polynomial of order $\mathrm{m}: ~ f(x ; \theta)=\sum_{j=0}^{m} x^{j} \theta_{j}$
- 0-th order: the weighted average
- 1-st order: a very good description
- 4-th order: equal number of parameters as points
- For Gaussian distributed $y$ LS $=$ ML!



## PEARSON'S VS NEYMAN'S CHI-SQUARE

- If $y_{i}$ are Poissonian distributed variance is equal to the mean value so there are two choices
Pearson's Chi-Square is $\chi^{2}(\theta)=\sum_{i=1}^{N} \frac{\left(y_{i}-\lambda_{i}(\theta)\right)^{2}}{\lambda_{i}(\theta)}$
- now $\sigma_{i}$ depends on parameters $\theta$ that complicates the minimisation procedure

Neyman's or modified Chi-Square is $\chi^{2}(\theta)=\sum_{i=1}^{N} \frac{\left(y_{i}-\lambda_{i}(\theta)\right)^{2}}{y_{i}}$

- minimisation simpler but errors may be poorly estimated
- problem for $y_{i}=0$


## CONFIDENCE INTERVALS

○ In addition to a "point estimate" of a parameter we should report an interval reflecting its statistical uncertainty.

- Desirable properties of such an interval:
- communicate objectively the result of the experiment
- have a given probability of containing the true parameter
- provide information needed to draw conclusions about the parameter
- communicate incorporated prior beliefs and relevant assumptions
- Often use $\pm$ the estimated standard deviation ( $\sigma$ ) of the estimator
- In some cases, however, this is not adequate:
- estimate near a physical boundary
- if the PDF is not Gaussian


## CONFIDENCE INTERVAL DEFINITION

- Let some measured quantity be distributed according to some PDF $f(x ; \theta)$, we can determine the probability that x lies within some interval, with some confidence C:
$P\left(x_{-}<x<x_{+}\right)=\int_{x_{-}}^{x_{+}} f(x ; \theta) d x=C$
- We say that $x$ lies in the interval $\left[\mathrm{x}, \mathrm{x}_{+}\right]$ with confidence C



## GAUSSIAN CONFIDENCE INTERVALS



- If $f(x ; \theta)$ is a Gaussian distribution with mean $\mu$ and variance $\sigma^{2}$ :
- $x_{ \pm}=\mu \pm 1 \cdot \sigma \quad C=68 \%$
- $x_{ \pm}=\mu \pm 2 \cdot \sigma \quad C=95.4 \%$
- $x_{ \pm}=\mu \pm 1.64 \cdot \sigma \quad C=90 \%$
© $x_{ \pm}=\mu \pm 1.96 \cdot \sigma \quad C=95 \%$


## TYPES OF CONFIDENCE INTERVALS

$$
P\left(x_{-}<x<x_{+}\right)=\int_{x_{-}}^{x_{+}} f(x ; \theta) d x=C
$$

- There are 3 conventional ways to choose an interval around the centre:

1) Symmetric interval: $x$ - and $x_{+}$equidistant from the mean
2) Shortest interval: minimizes ( $x_{+}-x_{-}$)
3) Central interval: $\int_{-\infty}^{x_{-}} f(x ; \theta) d x=\int_{x_{+}}^{+\infty} f(x ; \theta) d x=\frac{1-C}{2}$

- For the Gaussian, and any symmetric distributions, 3 definitions are equivalent


## ONE-TAILED CONFIDENCE INTERVALS

- So far we have considered only two-tailed intervals, but sometimes one-tailed limits are also useful
- for example in the case of measuring a parameter near a physical boundary
- Upper limit: x lies below $\mathrm{x}_{+}$at confidence level $\mathrm{C}: \int_{-}^{x_{+}} f(x ; \theta) d x=C$

$$
-\infty
$$

$$
+\infty
$$

© Lower limit: $x$ lies above $x$ at confidence level $\mathrm{C}: \int_{x_{-}}^{+\infty} f(x ; \theta) d x=C$

- In a measurement two things involved:
- True physical parameters: $\theta^{\text {true }}$
- Measurement of the physical parameter (parameter estimation): $\hat{\theta}$
- Given the measurement $\hat{\theta} \pm \sigma_{\theta}$ what can we say about $\theta^{\text {true }}$ ?
- Can we say that $\theta^{\text {true }}$ lies within $\hat{\theta} \pm \sigma_{\theta}$ with $68 \%$ probability?
- NO!!!
- $\theta^{\text {true }}$ is not a random variable! It lies in the measured interval or it does not!
- We can say that if we repeat the experiment many times with the same sample size, construct the interval according to the same prescription each time, in $68 \%$ of the experiments $\hat{\theta} \pm \sigma_{\theta}$ interval will cover $\theta^{\text {true }}$.


## CONFIDENCE INTERVALS FOR THE ML METHOD

- There are two ways to obtain confidence intervals for the parameter estimated by the Maximum Likelihood method


## ○ Analytical way:

- If we assume the Gaussian approximation we can estimate the confidence interval by matrix inversion:

$$
\operatorname{cov}^{-1}\left(\theta_{i}, \theta_{j}\right)=\left.\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right|_{\theta=\hat{\theta}}
$$

- If the likelihood function is non-Gaussian and in the limit of small number of events this approximation will give symmetrical interval while that might not be the case
- Possible to solve by hand only for very simple PDF cases, otherwise numerical solution needed
- Matrix inversion done with HESSE/MINUIT algorithm in ROOT
© From the Log-Likelihood curve


## CONFIDENCE INTERVALS FOR THE ML METHOD

- Extract $\sigma_{\hat{\theta}}$ from log-likelihood scan using:

$$
\ln L\left(\hat{\theta} \pm N \cdot \sigma_{\hat{\theta}}\right)=\ln L_{\max }-\frac{N^{2}}{2}
$$

- This is the same as looking for $2 \ln L_{\max }-N^{2}$



## CONFIDENCE INTERVALS FOR THE ML METHOD

- The Log-Likelihood function can be asymmetric
- for smaller samples, very non-Gaussian PDFs, non-linear problems,...
- The confidence interval is still extracted from the Log-Likelihood curve using the same prescription
- This leads to asymmetrical confidence interval that should be used when quoting the final result


| CL | $\Delta_{\mathrm{L}}$ |
| :---: | :---: |
| 68.27 | 1 |
| 95.45 | 4 |
| 99.73 | 9 |

## CONFIDENCE INTERVALS FOR THE LS METHOD

- The confidence intervals for the Least Squares (Chi-Square) method are obtained in the identical way as for the Maximum likelihood method
- Analytical way of matrix inversion:
- Solving analytically (or numerically):

$$
\operatorname{cov}^{-1}\left(\theta_{i}, \theta_{j}\right)=\left.\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \theta_{i} \partial \theta_{j}}\right|_{\theta=\hat{\theta}}
$$

- From the Chi-Square curve


| $\mathbf{C L}$ | $\boldsymbol{\Delta}_{\mathbf{L}}$ |
| :---: | :---: |
| 68.27 | 1 |
| 95.45 | 4 |
| 99.73 | 9 |

## NEYMAN CONFIDENCE INTERVAL

- Using frequentist approach Neyman defines confidence interval of the unknown parameter $\theta$ :

$$
P\left(x_{1}<x<x_{2} ; \theta\right)=\int^{x_{2}} f(x ; \theta) d x=C L
$$

$x_{1}$

- x is the measurement and CL is predefined confidence level
- Union of $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ segments for all values of the parameter $\theta$ is known as the confidence belt
- All of these steps are performed before measuring the data



## NEYMAN CONFIDENCE INTERVAL

- Now we perform the measurement to obtain $x_{0}$
© the points $\theta$ where the belt intersects $x_{0}$ are part of the confidence interval [ $\left.\theta_{-}, \theta_{+}\right]$for this measurement
- For every point $\theta$, if it were true, the data would fall in its acceptance region with probability CL , so the interval $\left[\theta_{-}, \theta_{+}\right]$covers the true value with probability CL

© Still a frequentist approach!



## BAYESIAN CONFIDENCE INTERVALS

- In Bayesian statistics, all knowledge about parameter $\theta$ is contained in the posteriori PDF $p(\theta \mid x)$ :

$$
p(\theta \mid x)=\frac{L(x \mid \theta) \pi(\theta)}{\int L\left(x \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) d \theta^{\prime}}
$$

- which gives the degree of belief for $\theta$ to have values in certain region given we observe the data x
- $\pi(\theta)$ is the prior PDF for $\theta$, reflecting experimenter's subjective degree of belief about $\theta$ before the measurement
- $L(x \mid \theta)$ is the Likelihood function, i.e. the PDF for the data given a certain value of $\theta$
- The dominator simply normalises the posteriori PDF to unity


## BAYESIAN CONFIDENCE INTERVALS - EXAMPLE

- We can now use Bayesian statistics to express our degree of belief about $\theta$ before the measurement:

$$
\pi(\theta)= \begin{cases}0, & m<0 \\ \text { constant }, & m \geq 0\end{cases}
$$

- assuming a Gaussian PDF we can calculate

$$
p(\theta \mid x)=\frac{e^{-\frac{(x-\theta)^{2}}{2 \sigma^{2}}}}{\int_{0}^{\infty} e^{-\frac{\left(x-\theta^{\prime}\right)^{2}}{2 \sigma^{2}}} d \theta^{\prime}}
$$

