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DATA ANALYSIS



1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation and Confidence intervals
4) Hypothesis testing and p-value
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PARAMETER ESTIMATION AND 
CONFIDENCE INTERVALS
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ANALYSIS

DATA

Described by PDFs, 
depending on unknown parameters  

with true values 
θtrue=(mHtrue,ΓHtrue,…,σtrue) 



๏ The parameters of a PDF are constants that characterise its shape: 

๏ where x is measured data, and θ are parameters that we are trying to estimate (measure)

๏ Suppose we have a sample of observed values 
๏ Our goal is to find some function of the data to estimate the parameter(s) 

๏ we write the parameter estimator with a hat  

๏ we usually call the procedure of estimating parameter(s): parameter fitting

⃗x = (x1, x1, ⋯, xn)

̂θ( ⃗x )

PARAMETER ESTIMATION 5

f(x; θ) =
1
θ

e− x
θ



๏ Task: find the average height of all students in a university on the basis of an 
(honestly selected) sample of N students 

๏ Some possible ways of getting the result:
1) Add up all the heights and divide by N
2) Add up the first 10 heights and divide by 10. Ignore the rest
3) Add up all the heights and divide by N-1
4) Throw away the data and give the answer as 1.8 m 
5) Multiply all the heights and take the N-th root
6) Choose the most popular height (the mode)
7) Add up the tallest and shortest height and divide by 2
8) Add up the second, fourth, etc. and divide by N/2 for N even or by (N-1)/2 for N odd 

EXAMPLE - PARAMETER ESTIMATION 6



๏ Consistent
๏ Estimate converges to the true  

value as amount of data increases

๏ Unbiased
๏ Bias is the difference between expected  

value of the estimator and the true value  
of the parameter

๏ Efficient
๏ Its variance is small

๏ Robust
๏ Insensitive to departures from  

assumptions in the PDF

PROPERTIES OF A GOOD ESTIMATOR 7

̂θ more data θtrue

b = E( ̂θ) − θtrue = 0



๏ In counting experiments we usually represent data in histograms
๏ In the following example we will study a particle mass histogram

EXAMPLE IN HEP - HISTOGRAM FITTING 8

measured 
values

bins

Root:
histo->Draw();



๏ Measured values have statistical uncertainties so it is better to represent them 
with points and error bars
๏ each bin has a Poisson uncertainty

EXAMPLE IN HEP - HISTOGRAM FITTING 9

y13=36
σ13=√36=6

bin x13∈[0.60,0.65]

Root:
histo->Draw(“ep”);



๏ Therefore we have
๏ a set of precisely known values x = (x1,...,xN) - histograms bins
๏ At each xi 

๏ a measured value yi - number of events in a given bin
๏ a corresponding error on measured value σi

๏ We are missing a theoretical PDF  with true parameters  so we 
can calculate parameter estimator 

f(xi; θtrue) θtrue

̂θ

EXAMPLE IN HEP - HISTOGRAM FITTING 10

Breit–Wigner

Quadratic

BW+Q BW(x; D, Γ, M) ≈
DΓ

(x2 − M2)2 + 0.25Γ2

Q(x; A, B, C) = A + Bx + Cx2



EXAMPLE IN HEP - HISTOGRAM FITTING 11

f(xi, θtrue) = f(xi; D, Γ, M, A, B, C) = BW(xi; D, Γ, M) + Q(xi; A, B, C)
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Breit–Wigner

Quadratic

BW+Q
1

Physical  
phenomena 

Described by a theory EXPERIMENT

Sampling reality
2

3
Data sample 
x = (x1,x2,…,xN) 

x is a multivariate random 
variable

4

DATA ANALYSIS

5 Results 
๏ parameter estimates 
๏ confidence limits 
๏ hypothesis tests



๏ Be careful: statistic is not statisticS! 
๏ Any new random variable (f.g. T), defined as a function of a measured sample 

x is called a statistic 

๏ For example, the sample mean   is a statistic!  

๏ A statistic used to estimate a parameter is called an estimator
๏ For instance, the sample mean is a statistic and an estimator for the population mean, which 

is an unknown parameter
๏ Estimator is a function of the data 
๏ Estimate, a value of estimator, is our “best” guess for the true value of parameter

๏ Some other example of statistics (plural of statistic!): sample median, variance, 
standard deviation, t-statistic, chi-square statistic, kurtosis, skewness, …

T = T(x1, x2, . . . , xN)

x̄ =
1
N ∑ xi

TEST STATISTIC 13



๏ Gives consistent and asymptotically unbiased estimators
๏ Widely used in practice

HOW TO FIND A GOOD ESTIMATOR? 14

THE MAXIMUM LIKELIHOOD METHOD

THE LEAST SQUARES (CHI-SQUARE) METHOD

๏ Gives consistent estimator 
๏ Linear Chi-Square estimator is unbiased
๏ Frequently used in histogram fitting 

THE METHOD OF MOMENTS

๏ Gives consistent and asymptotically unbiased estimators
๏ Not as efficient as the Maximum Likelihood method



๏ Assume that observations (events) are independent 
๏ With the PDF depending on parameters θ: 

๏ The probability that all N events will happen is a product of all single events 
probabilities:
๏

๏ When the variable x is replaced by the observed data xOBS, then P is no 
longer a PDF

๏ It is usual to denote it by L and called L(xOBS;θ) the likelihood function 
๏ Which is now a function of θ only  

๏ Often in the literature, it’s convenient to keep X as a variable and continue to 
use notation L(X;θ) 

f(xi; θ)

P(x; θ) = P(x1; θ)P(x2; θ)⋯P(xN; θ) = ∏P(xi; θ)

L(θ) = P(xOBS; θ)

THE LIKELIHOOD FUNCTION 15



๏ The probability that all N independent events will happen is given by the 
likelihood function 

๏ The principle of maximum likelihood (ML) says: The maximum likelihood 
estimator  is the value of  for which the likelihood is a maximum!

๏ In words of R. J. Barlow: “You determine the value of  that makes the probability 
of the actual results obtained, {x1, ..., xN}, as large as it can possible be.”

๏ In practice it’s easier to maximize the log-likelihood function 

๏ For p parameters we get a set of p likelihood equations:   

๏ It is often more convenient the minimise -lnL or -2lnL

L(x; θ) = ∏ f(xi; θ)

̂θ θ
θ

ln L(x; θ) = ∑ ln f(xi; θ)
∂ ln L(x; θ)

∂θj
= 0

THE MAXIMUM LIKELIHOOD METHOD 16



๏ Consider the lifetime pdf  

๏ Suppose we have measured data t(t1,…,tN)

๏ Our likelihood function is defined as 

๏ The value of  for which  is maximum also gives the maximum value of its 

log-likelihood function  

๏ Solving one likelihood equation  gives 

๏ Try generating 100 Monte Carlo toys for  and estimating  using the ML 
method

f(t; τ) =
1
τ

e(− t
τ )

L(τ) = ∏ f(ti; τ)
τ L(τ)

ln L(τ) = ∑ ln f(ti; τ) = ∑ (ln
1
τ

−
ti
τ

)

∂ ln L(τ)
∂τ

= 0 ̂τ =
1
N ∑ ti

τ = 1 ̂τ

THE MAXIMUM LIKELIHOOD EXAMPLE 17



๏ ML estimator is consistent
๏ ML estimate is approximately unbiased and efficient for large samples

๏ Usually biased for small samples

๏ ML estimate is invariant
๏ A transformation of parameter won’t change the answer

๏ Keep in mind that invariance comes at the cost of a bias!

๏ Extra care to be taken when the best value of parameters are near imposed limits
๏ ML estimate is not the most likely value of parameter; it is the estimate that 

makes your data the most likely!
๏ What was presented up to now is sometimes called the unbinned maximum 

likelihood
๏ ML has many advantages, but a few drawbacks too

PROPERTIES OF THE ML ESTIMATOR 18



๏ In Bayesian statistics, both  and  are random variables

๏ We want to know the conditional PDF for  given the data :

                      

๏ where  is the prior probability density for , reflecting the stage of 
knowledge of  before measuring the data 

๏ If we choose “prior ignorance” , then 

๏ No golden rule on how to define 

๏ In Bayesian statistics all our knowledge about  is in 
๏ It is often a very complicated multidimensional function that is hard to report

๏ Summarised using an estimator  which is often defined as the mode of 

θ x
θ x

p(θ |x) =
L(x |θ)π(θ)

∫ L(x |θ′ )π(θ′ )dθ′ 

π(θ) θ
θ x

π(θ) = const ̂θBayes = ̂θML

π(θ)
θ p(θ |x)

̂θBayes p(θ |x)

ML AND BAYESIAN DATA 19



๏ Likelihood function ( ) is constructed by replacing the variable x by the 
observed data in a product of single events probabilities

๏ Maximising (minimising) the  (- ) function gives the parameter 
estimate 

๏  does not mean that the estimate is the “most likely” value of , it is the 
value that makes your data most likely 

๏ ML estimate is unbiased and efficient for large samples, be careful if you want 
to use it for small samples

๏ ML can be used to fit binned data
๏ ML can be extended to deal with the case where the number of expected 

events is not a fixed number but a random number

L

ln L 2 ln L
̂θML

̂θML θ

MAXIMUM LIKELIHOOD - SUMMARY 20



๏ Suppose you have a set of precisely known (without error) values 
 with a corresponding set of measured values  with 

corresponding uncertainties 
๏ For example  histogram mass bins with  events with Poissonian uncertainty 

๏ Suppose you also know a function  which predicts the value of  for any 
. It depends on an unknown parameter , which you are trying to determine.

๏ In our example function  would be theoretical prediction for number of events at a given 
mass

๏ To find best estimate of  we minimise the suitably weighted sum of squared 
differences between measured and predicted values, the so called “least 
squares” or “chi-square”:

x(x1, . . . , xN) y(y1, . . . , yN)
σ(σ1, . . . , σN)

xi yi σi

f(x; θ) yi
xi θ

f(x; θ)

θ

χ2(θ) =
N

∑
i=1

(yi − f(xi; θ))2

σ2
i

THE LEAST SQUARES METHOD 21



๏ Estimator is found by finding the value which minimises  

๏ The quantity  gives information about the fit 

quality

๏ Since , easy way to estimate the fit quality is to check if

, N.D.O.F is calculated as (N - free parameters)

χ2 :
∂χ2

∂θ
= 0

χ2 =
N

∑
i=1

(ydata
i − yideal

i )2

(expected error)2

< χ2 > = N
χ2

N . D . O . F
≈ 1

THE LEAST SQUARES METHOD 22

small 𝜒2 large 𝜒2

good fit bad fit (bad model)

overestimated errors underestimated errors



CHI-SQUARE FIT TEST - EXAMPLE 23



๏ LS has particularly desirable properties if  is a linear function of : 

 , where  are linearly independent functions of x

๏ estimators and their variances can be found analytically
๏ the estimators have zero bias and minimum variance

f(x; θ) θ

f(x; θ) =
m

∑
j=1

aj(x)θj aj(x)

LINEAR LEAST SQUARES FIT 24



๏ Assume we measure 5 values of a quantity , measured with errors  at 
different values of 

๏ For the fit function we try polynomial of order m:    

๏ 0-th order: the weighted average
๏ 1-st order: a very good description
๏ 4-th order: equal number of parameters as points

๏ For Gaussian distributed  LS = ML!

y σy
x

f(x; θ) =
m

∑
j=0

xjθj

y

POLYNOMIAL LEAST SQUARES FIT 25



๏ If  are Poissonian distributed variance is equal to the mean value so there 
are two choices

๏
Pearson’s Chi-Square is 

๏ now  depends on parameters  that complicates the minimisation procedure

๏
Neyman’s or modified Chi-Square is 

๏ minimisation simpler but errors may be poorly estimated

๏ problem for 

yi

χ2(θ) =
N

∑
i=1

(yi − λi(θ))2

λi(θ)
σi θ

χ2(θ) =
N

∑
i=1

(yi − λi(θ))2

yi

yi = 0

PEARSON’S VS NEYMAN’S CHI-SQUARE 26



๏ In addition to a “point estimate” of a parameter we should report an interval 
reflecting its statistical uncertainty. 

๏ Desirable properties of such an interval:
๏ communicate objectively the result of the experiment 
๏ have a given probability of containing the true parameter 
๏ provide information needed to draw conclusions about the parameter 
๏ communicate incorporated prior beliefs and relevant assumptions

๏ Often use ± the estimated standard deviation (σ) of the estimator 
๏ In some cases, however, this is not adequate: 

๏ estimate near a physical boundary
๏ if the PDF is not Gaussian

CONFIDENCE INTERVALS 27



๏ Let some measured quantity be 
distributed according to some PDF 

, we can determine the probability 
that x lies within some interval, with 
some confidence C:

๏ We say that x lies in the interval [x-,x+] 
with confidence C

f(x; θ)

P(x− < x < x+) =

x+

∫
x−

f(x; θ)dx = C

CONFIDENCE INTERVAL DEFINITION 28



๏ If  is a Gaussian distribution with mean μ and variance σ2:
๏
๏
๏
๏

f(x; θ)
x± = μ ± 1 ⋅ σ C = 68 %
x± = μ ± 2 ⋅ σ C = 95.4 %
x± = μ ± 1.64 ⋅ σ C = 90 %
x± = μ ± 1.96 ⋅ σ C = 95 %

GAUSSIAN CONFIDENCE INTERVALS 29



                                    

๏ There are 3 conventional ways to choose an interval around the centre:

1) Symmetric interval: x- and x+ equidistant from the mean
2) Shortest interval: minimizes (x+ - x-)

3) Central interval: 

๏ For the Gaussian, and any symmetric distributions, 3 definitions are equivalent 

P(x− < x < x+) =

x+

∫
x−

f(x; θ)dx = C

x−

∫
−∞

f(x; θ)dx =
+∞

∫
x+

f(x; θ)dx =
1 − C

2

TYPES OF CONFIDENCE INTERVALS 30



๏ So far we have considered only two-tailed intervals, but sometimes one-tailed 
limits are also useful
๏ for example in the case of measuring a parameter near a physical boundary

๏ Upper limit: x lies below x+ at confidence level C:

๏ Lower limit: x lies above x- at confidence level C:

x+

∫
−∞

f(x; θ)dx = C

+∞

∫
x−

f(x; θ)dx = C

ONE-TAILED CONFIDENCE INTERVALS 31



๏ In a measurement two things involved:
๏ True physical parameters: 

๏ Measurement of the physical parameter (parameter estimation): 

๏ Given the measurement  what can we say about  ?

๏ Can we say that  lies within  with 68% probability?
๏ NO!!! 

๏  is not a random variable! It lies in the measured interval or it does not!

๏ We can say that if we repeat the experiment many times with the same sample 
size, construct the interval according to the same prescription each time, in 
68% of the experiments  interval will cover .

θtrue

̂θ
̂θ ± σθ θtrue

θtrue ̂θ ± σθ

θtrue

̂θ ± σθ θtrue

MEANING OF THE CONFIDENCE INTERVAL 32



๏ There are two ways to obtain confidence intervals for the parameter estimated 
by the Maximum Likelihood method

๏ Analytical way:
๏ If we assume the Gaussian approximation we can estimate the confidence interval by matrix 

inversion:

๏ If the likelihood function is non-Gaussian and in the limit of small number of events this 
approximation will give symmetrical interval while that might not be the case

๏ Possible to solve by hand only for very simple PDF cases, otherwise numerical solution needed
๏ Matrix inversion done with HESSE/MINUIT algorithm in ROOT

๏ From the Log-Likelihood curve

cov−1(θi, θj) =
∂2 ln L
∂θi∂θj θ= ̂θ

CONFIDENCE INTERVALS FOR THE ML METHOD 33



๏ Extract  from log-likelihood scan using:

                          

๏ This is the same as looking for 

σ ̂θ

lnL( ̂θ ± N ⋅ σ ̂θ) = lnLmax −
N2

2
2lnLmax − N2

CONFIDENCE INTERVALS FOR THE ML METHOD 34

2ln L
2(lnL)max - 1
2(lnL)max  

2(lnL)max - 4

2(lnL)max - 9

̂θ + 3σ̂θ + 2σ̂θ + 1σ̂θ̂θ − 1σ̂θ − 2σ̂θ − 3σ θ



๏ The Log-Likelihood function can be asymmetric
๏ for smaller samples, very non-Gaussian PDFs, non-linear problems,…

๏ The confidence interval is still extracted from the Log-Likelihood curve using 
the same prescription
๏ This leads to asymmetrical confidence interval that should be used when quoting the final result

CONFIDENCE INTERVALS FOR THE ML METHOD 35

θ̂ Uθθ Δ+ˆLθθ Δ−ˆ

2ln L

2(lnL)max - ΔL

2(lnL)max  

θ

CL ΔL

68.27 1

95.45 4

99.73 9



๏ The confidence intervals for the Least Squares (Chi-Square) method are 
obtained in the identical way as for the Maximum likelihood method

๏ Analytical way of matrix inversion:
๏ Solving analytically (or numerically):

๏ From the Chi-Square curve

cov−1(θi, θj) =
1
2

∂2χ2

∂θi∂θj θ= ̂θ

CONFIDENCE INTERVALS FOR THE LS METHOD 36

χ2min+ 1

θ

χ2

σθ +ˆσθ −ˆ

χ2min

θ̂

CL ΔL

68.27 1

95.45 4

99.73 9



๏ Using frequentist approach Neyman defines confidence interval of the 
unknown parameter :

                           

θ

P(x1 < x < x2; θ) =
x2

∫
x1

f(x; θ)dx = CL

NEYMAN CONFIDENCE INTERVAL 37

๏ x is the measurement and CL is predefined 
confidence level

๏ Union of [x1,x2] segments for all values of the 
parameter  is known as the confidence 
belt

๏ All of these steps are performed before 
measuring the data

θ



๏ Now we perform the measurement to obtain x0

๏ the points  where the belt intersects x0 are part of the confidence interval 
[ , ] for this measurement 

๏ For every point , if it were true, the data would fall in its acceptance region 
with probability CL, so the interval [ , ] covers the true value with probability 
CL  

θ
θ− θ+

θ
θ− θ+

NEYMAN CONFIDENCE INTERVAL 38

๏ Still a frequentist approach!



๏ In Bayesian statistics, all knowledge about parameter  is contained in the 
posteriori PDF :

                                       

๏ which gives the degree of belief for  to have values in certain region given we 
observe the data x

๏  is the prior PDF for , reflecting experimenter’s subjective degree of 
belief about  before the measurement

๏  is the Likelihood function, i.e. the PDF for the data given a certain 
value of 

๏ The dominator simply normalises the posteriori PDF to unity

θ
p(θ |x)

p(θ |x) =
L(x |θ)π(θ)

∫ L(x |θ′ )π(θ′ )dθ′ 

θ

π(θ) θ
θ

L(x |θ)
θ

BAYESIAN CONFIDENCE INTERVALS 39



๏ We can now use Bayesian statistics to express our degree of belief about  
before the measurement:

                                       

๏ assuming a Gaussian PDF we can calculate

θ

π(θ) = {0, m < 0
constant, m ≥ 0

p(θ |x) =
e− (x − θ)2

2σ2

∞
∫
0

e− (x − θ′ )2
2σ2 dθ′ 

BAYESIAN CONFIDENCE INTERVALS - EXAMPLE 40


