Exercise 1: Probability Density Functions and Monte Carlo generators

Toni Šćulac (Faculty of Science, University of Split, Croatia)

Problem 1

Draw the Gaussian distribution for three different sets of values for the mean and standard deviation parameters (μ, σ). If a new particle is described by a Gaussian distribution Gauss $(\mu=200 \mathrm{GeV}, \sigma=2 \mathrm{GeV})$, calculate the following probabilities:

- to produce the new particle with a mass of 205 GeV or more;
- to produce the new particle with a mass between 199 and 201 GeV ;
- to independently produce two new particles with masses above 203 GeV .

Problem 2

Starting from the normal distribution $\operatorname{Gauss}(\mu=0, \sigma=1)$ derive and draw its Cumulative Density Function (CDF).

Problem 3

Transform already available uniform random number generator to draw random numbers according to a given PDF distribution. Let the user define a PDF function it wants random numbers to be generated according to. Draw a pair of random numbers (x, y) and if the value $P D F(x)>y$ keep the value x as the generated random number, otherwise discard it. This method is called the acceptance-rejection method.

Problem 4

Test your random number generator from Problem 3 to generate random numbers according to the normal distribution Gauss $(\mu=0, \sigma=1)$. Generate 10^{4} events and draw them in a histogram. Draw a normal distribution on top of the histogram. How many random numbers did you have to generate to obtain the 10^{4} random numbers distributed according to the given PDF?

Problem 5*

Implement the inversion method to generate random numbers according to the given PDF. First define the Cumulative Density Function for a given PDF. Generate a random number u then compute the value x for which $C D F(x)=u$. Take the calculated number x to be randomly drawn from the given PDF distribution. Test your random number generator using the normal distribution $\operatorname{Gauss}(\mu=0, \sigma=1)$. Compare the efficiency to the acceptance-rejection method from previous problems.

