
1

Introduction to CUDA and OpenCL

OpenCL elements

Outline

❑ A little bit about…

❑ What is the same and what is different

❑ General view on the OpenCL framework

❑ Examples, examples…

❑ Something completely different OpenACC toolkit

Tomasz Szumlak AGH-UST

Wydział Fizyki i Informatyki Stosowanej
25/11/2021

2

Because all is heterogeneous

❑ Before we start… PROJECTS!!
❑ We should decide the topics of projects this

Thursday and next Monday

❑ I usually go like that: easy way and hard(er) way
❑ The former is just to work on a selected topic using

NVIDIA developer blog and internet (e.g. delve into
reduction algorithms, shared memory properties,
etc.)

❑ Hard way is to provide a solution to a problem that
is more challenging (e.g. data analysis, end-to-end
project)

3

Because all is heterogeneous

❑ In principle all devices from mobile phones to large
computing centres features h. architecture

❑ Even a cheap laptop now can combine up to three
different processing units (P.U.): APU, CPU and GPU

❑ OpenCL (Open Computing Language) offers a nice
way to use them all – a portable code that is able,
in a transparent way, to use all P.U.

4

Industry Standards for Programming
Heterogeneous Platforms

OpenCL – simply had to be invented!
Open, royalty-free standard for portable, parallel programming of heterogeneous

parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general purpose

data-parallel computing

Graphics APIs
and Shading
Languages

Multi-processor
programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

5

Where to look for a kick-start

❑ A lot of excellent courses available on-line

❑ Definitively my winner is: „Hands On OpenCL”

❑ It is a self consistent, end-to-end course

❑ Hands-on examples provided via github repository

❑ Very nice slides accompany the course (I borrowed a few!)

❑ Extensive setting-up for various platforms provided

❑ „Must see” for everybody interested in OpenCL

❑ https://handsonopencl.github.io/

❑ NVIDIA recently integrated support for OpenCL into
their software drivers package

❑ https://developer.nvidia.com/opencl

https://handsonopencl.github.io/
https://developer.nvidia.com/opencl

6

OpenCL Hands-on

7

OpenCL Working Group within Khronos

❑ Diverse industry participation
❑ Processor vendors, system OEMs, middleware vendors,

application developers.

❑ OpenCL became an important standard upon release
by virtue of the market coverage of the companies
behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

8

Good news!

❑ If you paid attention to my lectures and did all
the exercises you will hit the ground running!

❑ OpenCL is just like CUDA but a bit different
❑ When discussing the basic features of the

OpenCL framework you will notice loads of
similarities!

❑ There is not „learning from scratch” – just
adjusting what you already know about CUDA

❑ Fine, let’s go!

9

Laying the foundation

❑ The fundamental goal is to use all computation units
(resources) available on a given system

❑ Exploits both data parallel (SIMD) and task parallel
models

❑ You create a OpenCL code by using extension to C
language (having deja vu yet…?)

❑ Providing abstraction of the underlying parallelism
❑ Different implementations (i.e., different libraries from

AMD/ATI, NVIDIA, …) define platforms which in turn can
enable the host system to interface with OpenCL-capable
device (again – very similar to CUDA enabled devices)

❑ OpenCL has its own particular „structure”

10

Disecting OpenCL

❑ After working with CUDA the OpenCL ecosystem
structure may seem a bit complicated – but remember it
is suppose to be much more generic!

❑ Platform Layer API

❑ Hardware abstraction layer
❑ Query facility, select and initialize compute devices (CD)
❑ Create compute contexts and task queues

❑ Run-time API
❑ Execute compute kernels
❑ Scheduler to manage the resources: processing units and

memory

❑ Language
❑ C-based extension
❑ A lot of goodies as built-in functions

11

Oh! It is so similar!

❑ When working with OpenCL we use the following
hierarchy: one host + one (many) compute device(s)
(here the CPU is also a C.D.!), one or more compute units
and finally one or more processing elements…

12

OpenCL Platform Model

❑ One Host and one or more OpenCL Devices
❑ Each OpenCL Device is composed of one or more

Compute Units
❑ Each Compute Unit is divided into one or more Processing Elements

❑Memory divided into host memory and device
memory

Processing
Element

OpenCL Device

……
…

…
……

…
…
……

…
…
……

…

Host

Compute Unit

1313

OpenCL Platform Model

Processing
Element

OpenCL Device

……
…

…
……

…
…
……

…
…
……

…

Host

Compute Unit

Whatever processors are available in the
system that can be „talked to” by OpenCL

(CPU, GPU,…)

❑One Host and one or more OpenCL Devices
❑ Each OpenCL Device is composed of one or more

Compute Units
❑ Each Compute Unit is divided into one or more Processing Elements

❑Memory divided into host memory and device memory

14

Parlez-vous OpenCL?

❑ Kernel – the atom of execution, usually just a
function (in C-language sense)

❑ Host application – one or more kernels
managed via not OpenCL specific code

❑ Work group: a collection of work items, must
have a unique work group ID, work item can be
synchronised

❑ Work item: an instance of a kernel at run time, it
must have a unique ID within the work group

❑ Sounds familiar…?

15

How does it compare to CUDA?

❑ Let’s create an explicit „translation matrix”

❑ Aha! Now it is really easy to understand…

❑ OpenCL „style”
❑ Kernel
❑ Host

application
❑ NDRange
❑ Work item
❑ Work group

❑ CUDA „style”
❑ Kernel
❑ Host

application
❑ Grid
❑ Thread
❑ Block

16

An N-dimensional domain of work-items

❑ Global Dimensions:
❑ 1024x1024 (whole problem space)

❑ Local Dimensions:
❑ 64x64 (work-group, executes together)

❑ Choose the dimensions that are “best” for your
algorithm (tuning a bit more difficult)

1024

1
0

2
4

Synchronization between work-
items possible only within

work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

17

A generic structure of an OpenCL
program

❑ Sorry for repeating myself…
but a typical OpenCL
program is a bit similar to
its CUDA counterpart

❑ It has a managing (service)
part and one or more
kernels

❑ As in CUDA the kernel is
just a basic atom of parallel
code to be executed on the
target device

18

The flow – vector addition example

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

19

// create the OpenCL context on a GPU device

cl_context context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

cl_device_id[] devices = malloc(cb);

clGetContextInfo(context,CL_CONTEXT_DEVICES,cb,devices,NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,devices[0],0,NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcb, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL,NULL,NULL,NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *) &memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *) &memobjs[2],

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, NULL,0,NULL,NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0,

n*sizeof(cl_float), dst,

0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

The flow – vector addition example

20

A high level snapshot of what is going on

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

21

A „complete” OpenCL program

22

A fierce beast – context

❑ We should understand context as the
environment for managing both objects and
resources in OpenCL sense

❑ This management is provided via appropriate
abstraction
❑ Context knows the devices as „something” that is

capable of performing computations
❑ Program objects: source that implements kernels
❑ Kernels: code that can be executed on OpenCL

enabled devices
❑ Memory objects: data that is used by devices
❑ Command queues: specialised mechanism for

interacting with compute devices

23

Memory management

❑ Memory management is explicit:
You are responsible for moving data from

host → global → local and back

24

„Threads” mapping

25

Context and Command-Queues

❑ Context:
❑ The environment within which

kernels execute and in which
synchronization and memory
management is defined.

❑ The context includes:
❑ One or more devices
❑ Device memory
❑ One or more command-queues

❑ All commands for a device (kernel
execution, synchronization, and
memory transfer operations) are
submitted through a command-queue.

❑ Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

This page is intentionally left blank

27

The toolkit

28

Big picture

❑ OpenACC is making your computations much
faster but in a completely different way…

❑ Minimal changes to your original code – fast to
make (clear) and easy to maintain

❑ Hint the compiler how and where to try to make
the code faster and it will obey! (almost each
time that is…)

❑ It is somewhat in the middle of pure CUDA and
OpenCL

❑ The source compilation will depend on the h/w
resources present in your system – cool!

29

Big picture

❑ The main motivation behind providing yet
another way of accelerating stuff was to make it
more accessible for scientist that do not like to
do computing… (there are people like that!)

❑ In a way it is much more transparent and do not
require people to attend CUDA lectures…

❑ The changes are made by introducing directives
into the code

❑ However, if one wants to go deeper, as usual,
extensive effort is needed – no pain no gain!

30

Memory hierarchy (II)

❑ The main paradigms of OpenACC

❑ Minimal intrusion (just a few percent of code
changes may bring a huge speed-ups)

❑ Use pragmas (compiler hints)

❑ Portability – do not limit your code to a given
OS or h/w – one code to run everywhere

31

A first view

32

Compromises

33

Kernel directives

34

Compiling
PGI comiler
(OpenACC toolkit)

35

Data movement… yes!

More hints to the
compiler…

36

Data clauses

Explicit shaping

37

Resources

