Astrophysical signatures of axion-like-particle clumps

Francesc Ferrer, Washington University in St. Louis
区 ferrer@wustl.edu

Collider, Dark Matter, and Neutrino Physics 2022. TAMU, May $24^{\text {th }}$

■ Well-motivated: strong CP-problem, promising DM candidates, ...

- Broad experimental program based on the Primakoff process: axions transform into photons in external magnetic fields (and vice versa).
■ Less constrained ALPs naturally appear in UV completions of the SM.
■ Interesting phenomenology of dark matter distribution.

OUTLINE

1 PBHs from topological defects

2 Fast radio bursts from compact axion stars

3 Axion stars and Gegenschein

```
FF, E. Massó, G. Panico, O. Pujolàs, F. Rompineve, PRL 122, 101301 (2019)
    J. Buckley, B. Dev, FF, F. P. Huang, PRD 103, 043015 (2021)
    B. Dev, FF, T. Okawa, in progress.
```

PBHs FROM TOPOLOGICAL DEFECTS

NON-ASTROPHYSICAL BHs?

Phase transitions in the early universe provide a potential avenue: Several violent phenomena naturally occur that can assist in generating large overdensities that gravitationally collapse into BHs: bubble collisions, topological defects, ...

Phase transitions in the early universe provide a potential avenue: Several violent phenomena naturally occur that can assist in generating large overdensities that gravitationally collapse into BHs: bubble collisions, topological defects, ...

■ We will consider axionic string-wall networks.

```
    T. Vachaspati, 1706.03868
FF, E. Massó, G. Panico, O. Pujolàs, F. Rompineve, PRL 122, 101301 (2019)
```

FORMING THE BLACK HOLE

After QCD transition

$N_{D W}=4$ case

$N_{\text {DW }}=1$

Only one domain wall is attached to each string. Such topological configurations quickly annihilate leaving behind a population of barely relativistic axions.

$N_{\text {DW }}>1$

There are $N_{\text {Dw }}$ domain walls attached to every string, each one pulling in a different direction. The network can actually be stable, and dominate the universe.

T. Hiramatsu, et al., JCAP 1301 (2013) 001

Lift the degeneracy of axionic vacua by introducing a bias term (dark QCD?). The energy difference between the different minima acts as a pressure force on the corresponding domain walls.

A closed DW of size R_{*} will rapidly shrink because of its own tension, once $R_{*} \sim H^{-1} \approx g_{\text {eff }}\left(T_{*}\right)^{-1 / 2} M_{p} / T_{*}^{2}$.
Its mass has contributions from the wall tension and from any difference in energy density between the two regions separated by the DW:

$$
M_{*}=4 \pi \sigma R_{*}^{2}+\frac{4}{3} \pi \Delta \rho R_{*}^{3} \approx 4 \pi \sigma H_{*}^{-2}+\frac{4}{3} \pi \Delta \rho H_{*}^{-3}
$$

A closed DW of size R_{*} will rapidly shrink because of its own tension, once $R_{*} \sim H^{-1} \approx g_{\text {eff }}\left(T_{*}\right)^{-1 / 2} M_{p} / T_{*}^{2}$.
Its mass has contributions from the wall tension and from any difference in energy density between the two regions separated by the DW:

$$
M_{*}=4 \pi \sigma R_{*}^{2}+\frac{4}{3} \pi \Delta \rho R_{*}^{3} \approx 4 \pi \sigma H_{*}^{-2}+\frac{4}{3} \pi \Delta \rho H_{*}^{-3}
$$

The Schwarzschild radius of the collapsing defect is $R_{S, *}=2 G_{N} M_{*}$, and the figure of merit for PBH formation is:

$$
p \equiv R_{S, *} / R_{*} \sim \frac{\sigma H_{*}^{-1}}{M_{p}^{2}}+\frac{\Delta \rho H_{*}^{-2}}{3 M_{p}^{2}}
$$

\Rightarrow Heavier black holes form from DW which collapse later in cosmological history.

Most of the axionic string-wall network disappears at T_{2}, which is when the vacuum contribution starts dominating, and both p and M_{*} increase steeply.
But, $1-10 \%$ of the walls survive until $\sim 0.1 T_{2}$, when:

- $p \sim 1$
- $M_{*} \sim 10^{6} M_{\odot}$
\Rightarrow A fraction $f \sim 10^{-6}$ of the DM end up forming SMBHs!

LATE COLLAPSES

FAST RADIO BURSTS FROM COMPACT AXION STARS

Lorimer et al. 2007

$$
\Delta t=\frac{e^{2}}{2 \pi m_{e} c}\left(\nu_{l o}^{-2}-\nu_{h i}^{-2}\right) \mathrm{DM} \approx 4.15\left(\nu_{l o}^{-2}-\nu_{h i}^{-2}\right) \mathrm{DM} \mathrm{~ms}
$$

DISTANCE

E.g. FRB 140514 has DM $563 \mathrm{~cm}^{-3}$ pc so $z \sim 0.56$ and $d_{L} \sim 3.3$ Gpc.

SUMMARY OF BASIC PROPERTIES

■ Short ~ms pulses of radio frequencies. The sources are at cosmological distances and they are very bright. Some are repeaters.

- Isotropic distribution, roughly 10^{3} FRBs per day over the whole sky above a fluence $\mathcal{F} \gtrsim 1$ Jy ms. Up to $z \sim 1$ the rate per volume $2 \times 10^{3} \mathrm{Gpc}^{-3} \mathrm{yr}^{1}$ is two orders of magnitude than core-collapse SN.
- No electromagnetic counterparts have been detected in other energy bands.

For a long time there were more theories than FRB events ...

```
E. Platts et al., "A living theory catalogue for fast radio bursts", Phys Rep 2019
```

Some highlights from the Theory Wiki (frbtheorycat.org):
■ Compact object mergers/interactions (WD, NS, BH)

- Collapse of objects (DM or BH induced)

■ SN remnants, AGN

- Collisions with axion stars
- Alien light sails

If $P Q$ is broken after inflation, the DM distribution is expected to be highly inhomogeneous. As soon as the Universe becomes matter dominated,

Axion miniclusters \Rightarrow Dense boson stars

Axion stars (dominated by self-gravity) or axitons (self-interactions) could be seen in microlensing surveys, but typically in the hard to measure femtolensing regime. Their radio signals are our best chance to unveil them!

Need to find solutions of

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left(\frac{1}{2} \partial_{\mu} a \partial^{\mu} a-V(a / f)\right)
$$

Typically expand scalar field in the non-relativistic regime, choose coupling constant f_{a} and central density.

SOLUTIONS

■ We are interested in dense stars to avoid tidal stripping.

- The conversion occurs before reaching the NS surface, at the resonant region, ~ 100 km .
- Other possibilities are resonant decay of the whole star away from any object (Tkachev 2015)

ObSERVATIONAL CONSTRAINTS

Axion stars and Gegenschein

Axion Gegenschein

Ghosh, Salvadó \& Miralda-Escudé, 2008.02729; A. Arza \& P. Sikivie, PRL 123 (2019) 131804;
Y. Sun, K. Schutz, A. Nambrath, C. Leung \& K. Masui, PRD 105 (2022) 063007

Axion GEGENSCHEIN

Y. Sun, K. Schutz, A. Nambrath, C. Leung \& K. Masui, PRD 105 (2022) 063007

CAN WE DETECT AXION STARS?

Let us assume that 10% of the axion DM is in the form of compact axion stars. Does this change the integral along the l.o.s?

CAN WE DETECT AXION STARS?

Let us assume that 10% of the axion DM is in the form of compact axion stars. Does this change the integral along the l.o.s?

Not as long as their spatial distribution is the same as that of the smooth halo. But,

Let us assume that 10% of the axion DM is in the form of compact axion stars. Does this change the integral along the l.o.s?

Not as long as their spatial distribution is the same as that of the smooth halo. But,

- Random fluctuations $\propto 1 / \sqrt{N_{\mathrm{a}}}$
- Dynamical friction: the more massive regular stars heat up the gas of axion stars.

T.D. Brandt, ApJ 2016; Koushiappas \& Loeb, 1704.01668

Echo flux can increase by up to 40% !

CONCLUSIONS

■ Inhomogeneous distributions of axion-like-particles through cosmic history could be linked to several astrophysical phenomena.

- The collapse of axionic topological defects can potentially generate PBHs of up to $10^{6} M_{\odot}$.
■ Compact axion stars crossing the resonant region of a NS atmosphere can be behind some of the mysterious FRBs.
■ The spatial distribution of these stars might be different than that of the smooth halo, which could boost the Gegenschein emission fluxes.

