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Introduction

CATHODE is a new method for model agnostic anomaly searches. 
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Introduction

CATHODE is a new method for model agnostic anomaly searches. 

Assume we have a resonant variable     , and some other
discriminating features    .
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Introduction

CATHODE is a new method for model agnostic anomaly searches.

Assume we have a resonant variable     , and some other 
discriminating features    . 

If we knew where the signal was, we could place cuts on these 
features to reject background while retaining signal.
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Introduction

CATHODE is a new method for model agnostic anomaly searches.

Assume we have a resonant variable     , and some other 
discriminating features    . 

If we knew where the signal was, we could place cuts on these 
features to reject background while retaining signal.

This, however, requires us to model both signal and background.
Furthermore, it is impossible to cover all possible models in all 
possible configurations. 
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Introduction

CATHODE is a new method for model agnostic anomaly searches.

Assume we have a resonant variable     , and some other 
discriminating features    . 
 
If we knew where the signal was, we could place cuts on these 
features to reject background while retaining signal.

This, however, requires us to model both signal and background. 
Furthermore, it is impossible to cover all possible models in all 
possible configurations. 

→ There is a need for model-agnostic methods. 

But if we don’t know the individual distributions of the signal and 
background, how can we find the (presumably) tiny signal in the 
giant haystack of background?
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Probability densities and background

Assume we have a resonant variable         , and some other features     .

How to find                        for a localized signal? 

3 different approaches:

• Find                       via simulation – but does this accurately
represent the background in the data?

7

Signal 
Region (SR)

Sidebands (SB)
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Probability densities and background

Assume we have a resonant variable         , and some other features     .

How to find                        for a localized signal? 

3 different approaches:

• Find                       via simulation – accurate enough?

• Assume                                                                   and train a classifier 
to distinguish between data in the (narrow) sidebands and the 
signal region (CWoLa) – not robust against correlations between          
         and     .

8

Signal 
Region (SR)

Sidebands (SB)

CWoLA: E. M. Metodiev, B. Nachman, J. Thaler, 1708.02949; J.H. Collins, K. Howe, B. Nachman, 1805.02664 and 1902.02634 
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Probability densities and background

Assume we have a resonant variable         , and some other features     .

How to find                        for a localized signal? 

3 different approaches:

• Find                       via simulation – accurate enough?

• Assume                                                                   and train a classifier 
to distinguish between data in the (narrow) sidebands and the 
signal region (CWoLa) – correlations?

• Train a conditional density estimator on                                 and 
interpolate into the signal region. Separately train another density 
estimator on                                and calculate the likelihood ratio* 
(ANODE) – a much more difficult task than training a classifier, but 
more robust to correlations.

9

ANODE: B. Nachman, D. Shih 2001.04990 | *According to the Neyman-Pearson lemma, the likelihood ratio is the optimal binary classifier
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The idea behind CATHODE

Combine the advantages of CWoLa and ANODE:

• Train a conditional density estimator on data in the sidebands and interpolate into the signal region. This 
protects against collapse due to correlations.
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The idea behind CATHODE

Combine the advantages of CWoLa and ANODE:

• Train a conditional density estimator on data in the sidebands and interpolate into the signal region. This 
protects against collapse due to correlations.

• Generate samples from the learned probability density, in the signal region. This is the background model.
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The idea behind CATHODE

Combine the advantages of CWoLa and ANODE:

• Train a conditional density estimator on data in the sidebands and interpolate into the signal region. This 
protects against collapse due to correlations.

• Generate samples from the learned probability density, in the signal region. This is the background model.

• Train a classifier to distinguish between data and samples in the signal region. The combination of one density 
estimator and one classifier is an easier task than having to do two density estimations.

12

Classification
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Quick intro to normalizing flows

The density estimation is performed using a Masked Autoregressive Flow (MAF), which is a type of normalizing flow.

Let    be a bijective map from a latent space with distribution             to the feature space with distribution             , 
such that                    .

By the change of variables formula for random variables, 

13

“easy” dist. data

sample generation

density estimation

L. Dihn et al 1410.8516 | D. Jimenez Rezende et al 1505.05770 | M. Germain et al 1502.03509 | G. Papamakarios et al 1705.07057
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A chain of bijective maps is also bijective:

In this way, we can use functions       that are easily invertible, while still obtaining expressivity.

    is not a neural network, since that wouldn’t be invertible, but its parameters (eg.              ) are. The parameters will 
be functions of     , such that                                          .

Density estimation: Expressivity
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Density estimation: Jacobian

In general, a number of              operations are needed to evaluate a d-dimensional Jacobian. 

This is made tractable by turning it into a triangular matrix, which only requires           operations for evaluation.

Use binary masks on the weights to ensure that each output is conditioned only on the previous outputs:

This ensures the autoregressive property (→triangular Jacobian), and goes by the name Masked Autoregressive 
Flow (MAF).
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Density estimation: Masked Autoregressive Flow

In general, a number of              operations are needed to evaluate a d-dimensional Jacobian. 

This is made tractable by turning it into a triangular matrix, which only requires           operations for evaluation.

Use binary masks on the weights to ensure that each output is conditioned only on the previous outputs:

This ensures the autoregressive property (→triangular Jacobian), and goes by the name Masked Autoregressive 
Flow (MAF).
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Density estimation: Masked Autoregressive Flow
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This ensures the autoregressive property (→triangular Jacobian), and goes by the name Masked Autoregressive 
Flow (MAF).

In general, a number of              operations are needed to evaluate a d-dimensional Jacobian. 

This is made tractable by turning it into a triangular matrix, which only requires           operations for evaluation.

Use binary masks on the weights to ensure that each output is conditioned only on the previous outputs:
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This ensures the autoregressive property (→triangular Jacobian), and goes by the name Masked Autoregressive 
Flow (MAF).

Density estimation: Masked Autoregressive Flow
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Note that we get all of this in a single forward pass through the 
network. The MAF is very fast at density estimation. 

* For a conditional density estimator, add a feature      which is not masked – all      can depend on it

In general, a number of              operations are needed to evaluate a d-dimensional Jacobian. 

This is made tractable by turning it into a triangular matrix, which only requires           operations for evaluation.

Use binary masks on the weights to ensure that each output is conditioned only on the previous outputs:
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Dataset

From the LHC Olympics R&D dataset, we use:

● 1,000,000 QCD dijet events

● 1,000                                               events

●  

● In signal region,                                                 : 
– 121,352 background events
– 772 signal events

● Initial 

19

LHCO: G. Kasieczka et al, 2101.08320
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Dataset: features

Conditional feature:

●        – the total invariant mass of the two 
          jets

Auxiliary features:

●             – the invariant masses of the 
               individual jets

●         – the n-subjettiness of the two jets
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MAF training 

Train the MAF in the sideband region for 100 epochs.
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MAF training: model selection

Train the MAF in the sideband region for 100 epochs.

Pick the 10 epochs with the lowest validation loss. We are
going to ensemble these 10 models.
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Sampling

Train the MAF in the sideband region for 100 epochs.

Pick the 10 epochs with the lowest validation loss. We are
going to ensemble these 10 models.

Draw          values in the signal region using a KDE fit to data.

Use these to sample* an equal number of events from each 
of the chosen epochs, and combine to one single sample
(ensembling). 

*We are using the MAF for sampling

23

Comparing samples (background model) to background in data
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Sampling

Train the MAF in the sideband region for 100 epochs.

Pick the 10 epochs with the lowest validation loss. We are
going to ensemble these 10 models.

Draw          values in the signal region using a KDE fit to data.

Use these to sample* an equal number of events from each 
of the chosen epochs, and combine to one single sample
(ensembling). 

At this point we may choose to oversample, generate more 
samples than data, which as we will see improves the 
performance.

24

Comparing samples (background model) to background in data
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Classification: getting the optimal anomaly detector

Train a classifier to distinguish between the samples we generated, and data in the signal region.

Train Keras with 3 hidden layers with 64 nodes each, ADAM as optimizer, for 100 epochs. Use class weights to re-
balance the classes if oversampling has been used.

 

*The optimal classifier trained to distinguish between two mixed datasets (containing signal and background) is also the optimal classifier for 
distinguishing signal from background.
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Classification: getting the optimal anomaly detector

Train a classifier to distinguish between the samples we generated, and data in the signal region.

Train Keras with 3 hidden layers with 64 nodes each, ADAM as optimizer, for 100 epochs. Use class weights to re-
balance the classes if oversampling has been used.

Pick the 10 epochs with the lowest validation loss, then average the predictions for each data point. 

Calculate the true positive rate (TPR) and false positive rate (FPR) from the above average, and then the significance 
improvement characteristic (                                ).

2626Anna Hallin, Rutgers – Classifying Anomalies THrough Outer Density Estimation (CATHODE) – arXiv 2109.00546



2727

Results

Initial 

Curves are medians of 10 independent re-trainings; bands are 1 standard deviation. 

                                               ROC                                                                                            SIC
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Results

Initial 

Curves are medians of 10 independent re-trainings; bands are 1 standard deviation. 

Significance improvement with CATHODE: up to 14 – approaches and even overlaps with idealized case.
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Results

Initial 

Curves are medians of 10 independent re-trainings; bands are 1 standard deviation. 

Significance improvement with CATHODE: up to 14 – approaches and even overlaps with idealized case.

29

Outperforms ANODE:
● CATHODE does not have to learn the density in the inner 

region, including the sharp peak where the signal is 
localized
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Results

Initial 

Curves are medians of 10 independent re-trainings; bands are 1 standard deviation. 

Significance improvement with CATHODE: up to 14 – approaches and even overlaps with idealized case.
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Outperforms CWoLa Hunting:
● There is a slight (percent level) correlation in the features
● CATHODE has the ability to oversample, giving the 

classifier more events to train on

30Anna Hallin, Rutgers – Classifying Anomalies THrough Outer Density Estimation (CATHODE) – arXiv 2109.00546



3131

Results

Initial 

Curves are medians of 10 independent re-trainings; bands are 1 standard deviation. 

Significance improvement with CATHODE: up to 14 – approaches and even overlaps with idealized case.
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Comparison to the Idealized Anomaly Detector:
● The Idealized Anomaly Detector trains on “real” 

background instead of samples

● It is meant to provide an upper bound on the 
performance of any data vs background anomaly 
detection method

● CATHODE almost saturates the optimal performance on 
this dataset
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Results: correlated data

Introduce artificial correlations between the features and the conditional variable: 
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Results: correlated data

Introduce artificial correlations between the features and the conditional variable: 

The classifier learns to distinguish data from samples from        , instead of learning the likelihood ratio. Since one of 
CWoLa’s necessary conditions is absence of correlations, it breaks down in this test. Right: ratio shifted/regular.
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Results: oversampling

The total number of data events in the training set is fixed at 60,000 while the number of sampled events is varied. 
Plot legends specify the number of samples used in training.

Oversampling helps to a certain degree, as the classifier has more events to train on. Note that oversampling is not 
available for methods that rely only on the data.

3434Anna Hallin, Rutgers – Classifying Anomalies THrough Outer Density Estimation (CATHODE) – arXiv 2109.00546



3535

Conclusions
● We have presented CATHODE: a new model agnostic search strategy for resonant new physics at the LHC and 

beyond.

● CATHODE learns the background density by training a MAF in the sidebands and then interpolating to the signal 
region. This is a data driven background estimation that is less sensitive to correlations.

● The background model is generated through sampling in the signal region. By oversampling we can create as 
much background as we wish, which improves the performance.

● The final step of CATHODE is to train a classifier to distinguish between data and samples. 

● CATHODE can reach a significance improvement of up to 14, and nearly saturates the optimal performance on 
this dataset.

● Further work and future directions
– Other datasets (very strong results so far)
– More or other auxiliary features
– Other density estimators (work in progress)
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Have other interesting datasets? Come talk to me!

?
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BACKUP
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Number of events used

We generated an additional 612,000 QCD dijet events specifically 
in the SR. Of these, 340,000 were used in evaluation, and 
272,000 were used in the simulation-based methods.
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Number of events used

Events used in different methods
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CURTAINS comparison

arXiv:2203.09470 (Mar 2022); John Andrew Raine, Samuel Klein, Debajyoti Sengupta, Tobias Golling

Instead of learning the density in the full sideband region, CURTAINS learns a transformation between two narrow 
sidebands. The background in the signal region is then estimated by transforming values from both sidebands into 
the signal region.
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CURTAINS comparison

arXiv:2203.09470 (Mar 2022); John Andrew Raine, Samuel Klein, Debajyoti Sengupta, Tobias Golling

The CATHODE we have presented here is what is called “CATHODE full”* in these plots. We see that the performance 
of CURTAINS overlap with CATHODE in the relevant (lower) signal efficiency range. 

* What Raine et al. call “CATHODE” is using only a narrow sideband (as for CWoLa) instead of the full distribution for background estimation. 
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