

New Proton Beam Dump Experiments at Fermilab: PIP2-BD and SBN-BD

Matt Toups, Fermilab

Mitchell Conference on Collider, Dark Matter, and Neutrino Physics 2022 Wed 25 May 2022

Mass/Energy Content of the Universe

Mass/Energy Content of the Universe

Where is the New Physics?

Accelerator-based neutrino beams

Secondary Particles

Accelerator-based new physics beams

Secondary Particles

Dark Sectors

- Focus on energy scales relevant for accelerator neutrino facilities (up to ~GeV)
- New physics should be neutral ("dark") under SM forces (EM, weak, strong)
- Connects to SM through finite list of "portal" operators, enabling systematic exploration

 $B_{\mu\nu}$ × $\epsilon/2 F'^{\mu\nu}$ Vector portal $|h|^2$ × $\mu S + \lambda |\phi|^2$ Higgs portalhL× $y_N N$ Neutrino portal

• Also of interest: axion portal, gauging SM global symmetries

Dark Sectors - Light Dark Matter

- Minimal models can explain the thermal relic abundance of dark matter and predict sub-GeV dark matter that can be produced and detected at accelerator-based neutrino facilities
- Representative model: vector portal kinetic mixing with $m_{A'} > m_{\chi}$

• Minimum SM coupling ϵ required for thermal freeze out

Dark Sectors - Light Dark Matter

Wide class of models that can explain the cosmological dark matter abundance accessible to accelerator-based searches

‡ Fermilab

Dark Sector Searches on the Booster Neutrino Beamline at Fermilab

MiniBooNE-DM pioneered accelerator-produced dark matter rescattering searches for benchmark models such as vector portal dark matter by running off target in beam dump mode

Fermilab Long-Baseline Neutrino Program

PIP-II Upgrade of Fermilab Accelerator Complex

PIP-II Upgrade of Fermilab Accelerator Complex

PIP-II Schedule

Mar 2018 Approve Alternative Selection (CD-1)	Dec 2020 Approve Scope, C Schedule (CD-2)	Cost,		Jan 2027 Shutdown Complex Operations For Booster Connection		
Mar 2021 Approve Long- Procurements		g-Lead s (CD-3a)	Sep 2024 Linac Tunnel Occupancy	Jan 2 SRF L Com	.inac m. Begins	
2018 $>$ 2019 $>$ 202	20 > 2021 >	2022 > 2023 > 2024	4 > 2025 > 2026	> 20	27 > 2028	
	ul 2020 Cryoplant Bldg. Construction Approved	Apr 2022 Approve Technical Construction (CD-3 review)		Pro Sta	Dec 2028 oject Completion art of Operations (Early CD-4)	
Mar 2019 Linac Complex Ground-Breaking	g					

PIP-II Linac

Will provide among the highest-power ~GeV proton beams in the world

Key high-level metrics for SC LINAC:

- Capable of 2 mA @ 800 MeV (1.6 MW)
- DUNE only uses 1.1% of this beam to achieve its physics goals
- Proton beam is ~continuous wave

Current short-baseline neutrino program uses horn-focused, decay-in-flight neutrino beam:

--> Target limited to 35 kW, but up to 80 kW available in PIP-II era in excess of DUNE needs

Current short-baseline neutrino program uses horn-focused, decay-in-flight neutrino beam:

--> Target limited to 35 kW, but up to 80 kW available in PIP-II era in excess of DUNE needs

Impinging proton beam on absorber enables dark sector search program:

SBN-BD Event Sensitivities

‡ Fermilab

Setup also has sensitivity to other DS models, e.g. hadrophilic DM

GeV Proton Beam Dumps

BSM Physics at GeV Proton Beam Dumps

Pion Decay-at-rest Sources as BSM Factories: Challenges

- Low energy nuclear recoil signal -> need low, O(1-10 keVnr) detector thresholds
- Rare signals —> need large beam exposures
- Steady state backgrounds —> need pulsed beams with low, O(10⁻⁶-10⁻⁴) duty factor
- Beam-related backgrounds —> adequate shielding (neutrons) —> beam timing (neutrons, neutrinos)

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

First detected by COHERENT collaboration in 2017 with Csl[Na] detector and then subsequently in 2020 with a 24 kg liquid argon (LAr) scintillation-only detector

New HEP tool to probe neutrino properties and search for BSM physics

PIP-II Accumulator Ring (PAR)

- Forward-looking design of the PIP-II linac includes provisions that facilitate future upgrades, including:
 - CW multi-user mode of operation
 - Increase in beam energy to 1 GeV and beyond
 - Stub in the beam transfer line to the Booster to provide beam to other users
- Extension of the PIP-II beam transfer line tunnel would allow co-location of an accumulator ring for modest cost that can be realized within the decade
 - Provides a dark sector program on Day 1 of PIP-II operation
 - Enables injecting 1 GeV beam in Booster as a pathway to higher LBNF beam power

Rapid Cycling Synchrotron (RCS) Booster Replacement

Compact PIP-II Accumulator Ring (C-PAR)

- Proposed <u>Advanced Muon Facility</u> calls for a compact 100 m accumulator ring for a future charged lepton flavor violation experiment using PIP-II
- Provides very short proton pulses of ~20 ns at O(100 Hz)
- Would also support a dark sector search program at a proton beam dump facility

Pion Decay-at-rest Accelerator Facilities

PIP2-BD

- Single-phase, 100 ton scintillation only liquid argon detector
 - Same technology as CENNS-10, Coherent CAPTAIN-Mills (CCM)
- Cylindrical volume with 1294 TPB-coated PMTs and TPB-coated reflectors on sides and end caps
- Geant4-based simulation of detector response indicate a 20 keVnr threshold is achievable
- Instrumental effects (PMT noise) and Ar-39 also taken into account

🛟 Fermilab

Vector Portal Kinetic Mixing Light Dark Matter Search

- PIP2-BD located 18 m downstream of the dump, on axis
- Geant4-based simulation of proton beam dump used to generate neutrino backgrounds and light meson distributions
- BdNMC used to generate dark matter nuclear recoils in the detector, then fed into the full detector simulation
- Rate-only sensitivity calculated using:

$$\Delta \chi^2 = \frac{N_{\rm sig}^2}{N_{\rm bkg} + \sigma^2 N_{\rm CEvNS}^2}$$

Vector Portal Kinetic Mixing 90% C.L. Sensitivities

Facility	Beam energy (GeV)	Repetition rate (Hz)	Pulse length (s)	Beam power (MW)
PAR	0.8	100	2×10^{-6}	0.1
C-PAR	1.2	100	2×10^{-8}	0.09
RCS-SR	2	120	2×10^{-6}	1.3

Hadrophilic Dark Matter 90% C.L. Sensitivities

‡ Fermilab

Inelastic Dark Matter 95% C.L. Sensitivities

- · Adding an additional dark matter species with a small mass splitting brings in a richer set of phenomenology
- Detection channels now include both scattering and decay signatures

🛠 Fermilab

Axion-like Particles (ALPs)

- ALPs can couple to photons and electrons produced in the beam dump
 - Excellent sensitivity due to intense source + large, low-threshold detector nearby

🚰 Fermilab

Following studies in CCM, assume 75% efficiency above 100 keV

Background-free 90% C.L. Sensitivities

Sterile Neutrinos

- CEvNS-based search provides smoking-gun evidence for sterile neutrinos
 - Three flavors of neutrinos, with the mono-energetic v_{μ} separated in time from the v_e and anti- v_{μ}
- Leverage advantages of dedicated HEP beam dump facility
 - Flexible detector positioning
 - · Near/far setup to cancel flux normalization systematics
 - · Low Z target to increase neutrino flux
 - Neutron shielding to reduce beam-correlated backgrounds to negligible levels
- Two identical PIP2-BD detectors at L = 15, 30 m from target
 - 20 keVnr threshold with 70% efficiency above threshold
 - 1:1 signal/background for beam-uncorrelated backgrounds
 - 9% correlated normalization systematic uncertainty
 - 36 cm path length smearing

 $\sin^{2} 2\theta_{\mu S} = 4U_{\mu 4}^{2}U_{S4}^{2} = 4U_{\mu 4}^{2}\left(1 - U_{e4}^{2} - U_{\mu 4}^{2}\right)$ $\sin^{2} 2\theta_{eS} = 4U_{e4}^{2}U_{S4}^{2} = 4U_{\mu 4}^{2}\left(1 - U_{e4}^{2} - U_{\mu 4}^{2}\right)$

or DUNE PRISM moveable detector concept

90% C.L. Rate-only Sensitivities (C-PAR)

Conclusion

Exciting prospect for discovering accelerator-produced light dark matter over the coming decade

PIP-II LINAC at Fermilab capable of driving among the highest-power ~GeV proton beams in the world

• Can simultaneously support multi-MW high energy beams for LBNF/DUNE (which uses only 1.1% of full beam capacity) and intense low (~GeV) energy protons beam

Excellent opportunity for a proton beam dump based dark sector (and neutrino physics) program at Fermilab that more fully utilizes PIP-II infrastructure as well as the existing BNB complex

The PIP-II Accumulator Ring could enable a GeV-scale proton beam dump program to be realized within the decade along with a clear upgrade path

• Key feature of such a beam dump facility at Fermilab is that it can be designed for and dedicated to HEP searches

Thank you for your attention!

Stopped pion decay-at-rest neutrino flux

🛟 Fermilab

Booster Replacement Physics Opportunities

Accelerator upgrade will be driven by science priorities

Many ideas on the table spanning a range of physics topics

Opportunity to define future program alongside DUNE

Experiment	Dark Sectors	V Physics	CLFV	Precision tests	R&D
Lepton flavor violation: µ-to-e conversion					
Lepton flavor violation: µ decay					
PIP2-BD: ~GeV Proton beam dump					
SBN-BD: ~10 GeV Proton beam dump					
High energy proton fixed target					
Electron missing momentum					
Nucleon form factor w/ lepton scattering					
Electron beam dumps					
Muon Missing Momentum					
Muon beam dump					
Physics with muonium					
Muon collider R&D and neutrino factory					
Rare decays of light mesons					
Ultra-cold neutrons					
Proton storage ring for EDM and axions					
Tau neutrinos					
Proton irradiation facility					
Test-beam facility					

https://arxiv.org/abs/2203.03925

