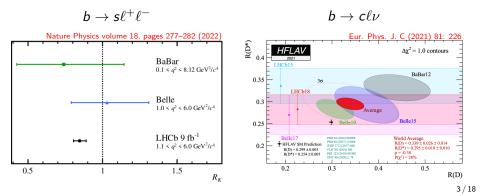
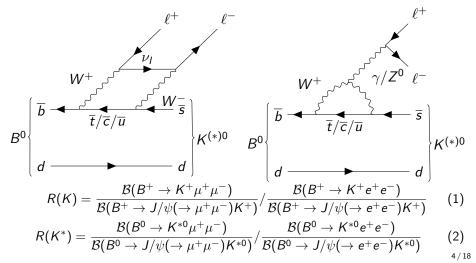
Status and Prospect of Search for Lepton Flavour Universality Violation

Denis Rathjens on behalf of the ATLAS and CMS collaborations

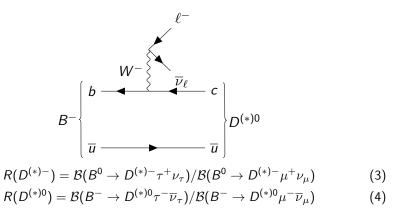

May 26, 2022

1 Lepton flavour universality violation in the B-meson sector?

- 2 Can ATLAS and CMS measure $R(D^{(*)})$ and $R(K^{(*)})$?
- 3 Beyond Standard Model (BSM) searches for LFUV?


B-flavour anomalies with lepton universality violation (LFUV)

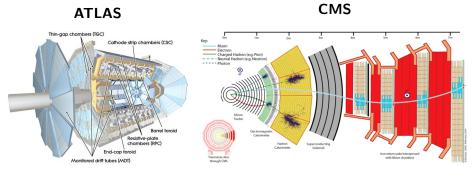
- In the standard model (SM), forces do not have different coupling strengths to different lepton flavours → lepton flavour universality (LFU)
- The currently most intriguing tests of LFU happen in the *B*-meson sector:


R(K) and R(K*)

• LHCb reports an excess in the muon to electron ratio of R_{K^*} (JHEP 08 (2017) 055) at 2.1 – 2.5 σ and R_K (Nature Physics volume 18, pages 277–282 (2022)) at 3.1 σ

R(D) and $R(D^*)$

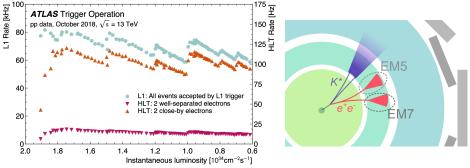
• $R(D^{(*)})$ has been measured by BaBar, Belle ([1], [2]), and LHCb $(R(D^*) \text{ only})$ at various tensions and agreement with the SM


- $\bullet\,$ All of this is low $p_{\rm T}$ physics at low luminosity experiments
- Can ATLAS and CMS also provide measurements for these?

1 Lepton flavour universality violation in the B-meson sector?

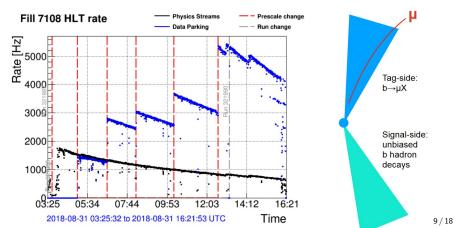
2 Can ATLAS and CMS measure $R(D^{(*)})$ and $R(K^{(*)})$?

3 Beyond Standard Model (BSM) searches for LFUV?


ATLAS and CMS detectors

- General purpose detectors with different lever arms and magnetic fields for charged particle measurements
- Differing calorimeter designs (CMS ECAL-centric, ATLAS HCAL-centric)
- Common challenge for B-meson physics is triggering
- $\bullet\,$ Unlike LHCb, both ATLAS and CMS run at high instantaneous luminosity for high-p_T-centric physics programme

ATLAS soft di-electron trigger


- General triggering strategy is multiple soft leptons and/or a mass-window constraint on dilepton-resonances like J/ψ or Φ
- New trigger in 2018 geared to $B \rightarrow K^* e^+ e^-$ events ATL-DAQ-PUB-2019-001

- Utilizes topology of the soft electron pair with low invariant mass
- Still necessitates a soft muon (or dimuon) L1 trigger from the other side of a *B*-meson pair production event for reasonable rates

CMS parked data with soft muon b-tagging

- CMS has implemented in 2018 data-taking a new trigger for soft muons from B-meson decays CMS-DP-2019/043
- Trigger requires low $p_T \mu (12 7 \text{ GeV})$ from displaced muons (impact parameter significance 4-6 σ) depending on peak luminosity to use "spare" bandwidth when luminosity falls

So, what can ATLAS and CMS do?

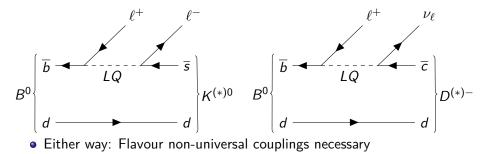
- Both have deployed B-anomaly-specific new triggers in 2018
- Work on analysing these datasets is ongoing and there has not yet been a publication on any of the LFUV ratios
- Low \mathbf{p}_{T} electrons and τ are a reconstruction challenge for both experiments
- We can expect some results on $R(K^*)$, maybe even on $R(D^*)$ for the 2018 dataset from both
- Run3 though will have a high luminosity profile with more pileup and therefore higher thresholds
- People are actively working on this issue, but it only gets more challenging
 - ATLAS WIP on $R(K^*)$ and $R(D^*)$ triggers
 - CMS WIP on low p_T track-based electron (CMS-DP-2019-043) and hadronic $\tau \rightarrow \pi \pi \pi \nu$ (CMS-DP-2020-039) reconstruction

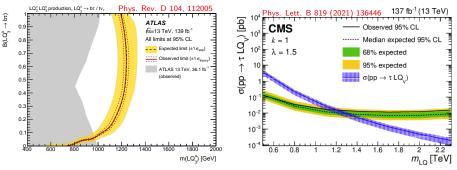
Lepton flavour universality violation in the B-meson sector?

2 Can ATLAS and CMS measure $R(D^{(*)})$ and $R(K^{(*)})$?

3 Beyond Standard Model (BSM) searches for LFUV?

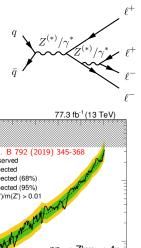
Effective Field Theory (EFT)

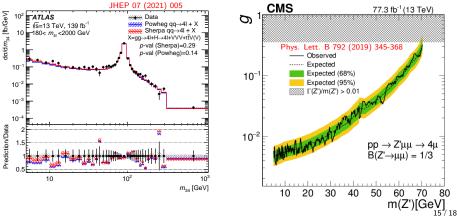

- Integrate out > m_W and have four-fermion interaction described by effective couplings $C_i = C_i^{SM} + C_i^{BSM}$
- Effective couplings dominated by vector (C_9) and axial vector (C_{10}) leptonic currents to explain $R(D^{(*)})$ and $R(K^{(*)})$


- Models can range from low mass narrow resonances to high mass wide resonances and anything in-between
- Limited by *B_s*-meson mixing on the hadronic coupling and neutrino trident production on the leptonic coupling

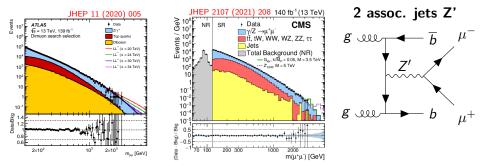
Leptoquarks

- \bullet Looking into the medium and high $p_{\rm T}$ regimes that ATLAS and CMS are better suited for, several BSM explanations are available and searched for
- One very straightforward idea are third generation leptoquarks (LQs)

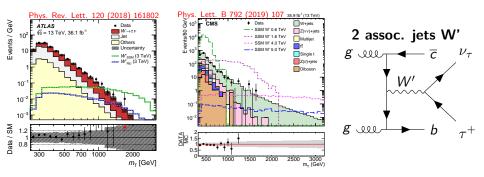

LQ searches



- ATLAS and CMS are both looking for LQs with third generation couplings (b, τ , t)
- Exclusion limits for these cases exist and are in the multi-TeV range for a large part of the parameter space
- LQ coupling $\lambda\text{-dependent}$ and for B-flavour anomalies two different λ need to be at work
- Only examples, lots of LQ results and searches exist


Low mass Z' di- μ coupling searches

- Leptonic coupling can be constrained in $Z \rightarrow 4\ell$ events
- Ideal for low mass Z' searches
- Easy to trigger, due to lepton multiplicity



Flavour non-democratic Z'

- Resonant and non-resonant searches for heavy new resonances with universal couplings to quarks exist
- Interpretation for B-anomaly purposes with flavour-violating *bs* quark coupling or third generation quark coupling viable
- Improvements by requiring one or two associated b-tags possible

Flavour non-democratic W'

- Transverse mass is the search variable of choice here
- More difficult, since $R(D^{(*)})$ indicate abundance of au indicating a lot of $p_{\mathrm{T}}^{\mathrm{miss}}$
- Searches can be optimized looking for additional *b* or even *c*-tagged jets

- LFUV stays an exciting topic in the HEP community
- Using specialized triggers, some *B*-anomaly-related quantities can be measured independently of LHCb by ATLAS and CMS and this is WIP
- Run 3 is an even bigger challenge than Run 2 was in terms of instantaneous luminosity increasing pileup though
- On the other hand, various BSM models with higher masses will benefit from any increase in dataset size, mostly regardless of pileup
- More and more searches pinpointed at *B*-anomaly-related models are in the pipeline
- But old searches, including SUSY and four-lepton cross section SM measurements, can be reinterpreted with respect to *B*-anomalies, too