THE VIABILITY OF ULTRALIGHT BOSONIC DARK MATTER IN DWARF GALAXIES

ISABELLE GOLDSTEIN^[1]

SAVVAS KOUSHIAPPAS^[1], MATTHEW WALKER^[2]

[1] BROWN THEORETICAL PHYSICS CENTER, BROWN UNIVERSITY

[2] MCWILLIAMS CENTER FOR COSMOLOGY, DEPARTMENT OF PHYSICS, CARNEGIE MELLON UNIVERSITY

ARXIV:2205.XXXXX

2022 MITCHELL CONFERENCE ON COLLIDER, DARK MATTER,

AND NEUTRINO PHYSICS

- Ultralight bosonic dark matter is a boson of mass m~10⁻²² eV
 - Often written as $m_{22} = m / 10^{-22} eV$
- Motivated by non QCD axions, GUT scale physics & string theory
- Quantum effects become macroscopic: ~kpc scale
 - Forms a Bose-Einstein condensate

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
 - Soliton core depends on particle mass and halo mass

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
 - Soliton core depends on particle mass and halo mass

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

M. Safarzadeh and D. N. Spergel, ApJ **893**, 21 (2020).

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
 - Soliton core depends on particle mass and halo mass
- Connects to an outer NFW for the full density profile

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

Soliton core only	NFW is physically unconstrained	González-Morales, Marsh, Peñarrubia, and Ureña-López, MNRAS 472 , 1346 (2017)
NFW parameters chosen independent of soliton parameters	Most general, but mass is not necessarily conserved	Safarzadeh and Spergel, ApJ 893 , 21 (2020).
Parameterized transition with density continuity	Transition radius is allowed to vary	Marsh Pop, 2015, MNRAS, 451 , 2479
Density continuity, Mass conservation M _{halo} = M _{core} + M _{NFW}	Total mass = core defining mass Enforces a minimum halo mass for a given particle mass	Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018.

 Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018. (Model C)

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018. (Model C)
- Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), 1807.06018. (Model C)
- Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

- Past work has done this with CDM, WIMPs
- Run with MultiNest Feroz, Hobson, and Bridges, MNRAS 398, 1601 (2009), choosing a:
 - Dark matter density profile
 - Particle mass, halo mass, velocity anisotropy

DATA

Data from:

- Walker, Mateo, and Olszewski, ApJ 137, 3100 (2009).
- Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe, ApJS 171, 389 (2007).
- Spencer, Mateo, Olszewski, Walker, McConnachie, and Kirby, ApJ 156, 257 (2018).

DATA

 Degeneracy between particle mass and halo mass

ANISOTROPY

 Velocity anisotropy β_a is a measure of the difference between tangential and radial velocity dispersion

$$\beta_a(r) \equiv 1 - \frac{2\overline{u_{\theta}^2}(r)}{\overline{u_r^2}(r)}$$

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).

ANISOTROPY

 Velocity anisotropy β_a is a measure of the difference between tangential and radial velocity dispersion

NFW M₂₀₀

Model C M₂₀₀, m₂₂

 Degeneracy between particle mass and halo mass

 Probability of 7 objects that size merging with a Milky
Way sized halo is very small (P~10⁻⁶), would need to be an atypical galaxy

RESULTS: CENTRAL BLACK HOLE

 Add a black hole (point mass) to the dwarf galaxy center

RESULTS: CENTRAL BLACK HOLE

- Add a black hole (point mass) to the dwarf galaxy center
- Allows for lower particle mass, lower halo mass posteriors

EVIDENCE

 Evidence is the sum of likelihood over the prior volume

EVIDENCE

 Evidence is the sum of likelihood over the prior volume

 Note that Ursa Minor has the smallest number of stars, and is the most irregular of the dwarfs analyzed

CONCLUSIONS

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.

CONCLUSIONS

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.

Particle masses of m>10⁻²⁰ eV are allowed, but more CDM-like.

CONCLUSIONS

- Particle masses of m<10⁻²⁰ eV are not kinematically viable in dwarfs unless:
 - The Milky Way is an atypical halo.
 - All dwarfs contain a central black hole of mass ~0.1% their halo mass.

Particle masses of m>10⁻²⁰ eV are allowed, but more CDM-like.

• There is no strong preference for any of the models in most dwarfs

ADDITIONAL MATERIAL

- ULB simulations are done with the Schrodinger-Poisson equations
 - Describes a self gravitating quantum superfluid

$$\begin{bmatrix} i\frac{\partial}{\partial\tau} + \frac{\nabla^2}{2} - aV \end{bmatrix} \psi = 0$$
$$\nabla^2 V = 4\pi \left(|\psi|^2 - 1 \right)$$

ADDITIONAL MATERIAL

Start with the collisionless Boltzmann equation, then integrate over [velocity moments] to get the Spherical Jeans Equation:

$$\frac{d(\nu \overline{u_r^2})}{dr} + 2\frac{\beta}{r}\nu \overline{u_r^2} = -\nu \frac{d\phi}{dr}$$

Assume anisotropy is constant over the system, and you get the solution:

$$\sigma^2(R)\Sigma(R) = 2\int_R^\infty \left(1 - \beta_a(r)\frac{R^2}{r^2}\right)\frac{\nu(r)\overline{u_r^2}(r)r}{\sqrt{r^2 - R^2}}dr$$

with $\Sigma(R)$ the projected stellar density, $\overline{u_r^2}(r)$ the radial stellar velocity dispersion profile, R is the projected radial distance from the center

ADDITIONAL MATERIAL: PRIORS

Model C ULB:

 $-1 \le -\log_{10}(1-\beta_a) \le +1,$ $-1 \le \log_{10}(m_{22}) \le 3$ $M_{200}^{\min}(m_{22}) \le \log_{10}(M_{200}/M_{\odot}) \le \log_{10}(5 \times 10^{10}),$

Generalized NFW:

$$-1 \leq -\log_{10}(1 - \beta_a) \leq +1,$$

$$\log_{10}(5 \times 10^7) \leq \log_{10}(M_{200}/M_{\odot}) \leq \log_{10}(5 \times 10^9),$$

$$\log_{10}(2) \leq \log_{10}(c_{200}) \leq \log_{10}(30),$$

$$0.5 \leq \alpha \leq 3,$$

$$3 \leq \beta \leq 10,$$

$$0 \leq \gamma \leq 1.2.$$

ADDITIONAL MATERIAL

~⁶

 $\log_{10}(m_{22})$

2.0

0.90