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ULTRALIGHT DARK MATTER

= Ultralight bosonic dark matter is a boson of mass m~10-%2 eV

= Often written as my; = m/ 1022 eV
= Motivated by non QCD axions, GUT scale physics & string theory

= Quantum effects become macroscopic: ~kpc scale

®m Forms a Bose-Einstein condensate



ULTRALIGHT DARK MATTER

m Simulations have found an

analytical form for the core
(Schive et al. 2014, Mocz et
al. 2018)

m Soliton core depends on
particle mass and halo
mass
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ULTRALIGHT DARK MATTER

m Simulations have found an

analytical form for the core

(Schive et al. 2014, Mocz et
al. 2018)

m Soliton core depends on
particle mass and halo
mass

= Connects to an outer
NFW for the full density

profile

Schive et al., Phys. Rev. Lett. 1 13,261302 (2014).
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ANALYSIS

Soliton core only

NFW is physically unconstrained

Gonzalez-Morales, Marsh,

Penarrubia, and Urena-Lopez,
MNRAS 472, 1346 (2017)

NFW parameters chosen
independent of soliton parameters

Most general, but mass is not necessarily
conserved

Safarzadeh and Spergel, Ap)
893,21 (2020).

Parameterized transition with
density continuity

Transition radius is allowed to vary

Marsh Pop, 2015, MNRAS, 451,
2479

Density continuity,
Mass conservation
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a
given particle mass

Robles, Bullock, and
Boylan-Kolchin MNRAS
483,289 (2019), 1807.06018.
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ANALYSIS

= Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483,
289 (2019), 1807.06018. (Model C)

m Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis
3D gravitational potential = Projected (2D) velocity dispersion
= Past work has done this with CDM,WIMPs

= Run with MultiNest Feroz, Hobson, and Bridges, MNRAS 398, 1601 (2009),
choosing a:

® Dark matter density profile

m Particle mass, halo mass, velocity anisotropy



DATA

Data from:

= Wialker, Mateo, and Olszewski,Ap] 137, 3100 (2009).

= Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe,ApJS 171, 389 (2007).
= Spencer, Mateo, Olszewski,Walker, McConnachie, and Kirby,Ap] 156,257 (2018).
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RESULTS

Model A Model C
Model B mmmmm NFW

® Degeneracy between Forax Carina Sculptor
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ANISOTROPY

. Velocityanisotropy B, IS a 0.5 SR —— R

measure of the difference
between tangential and radial
velocity dispersion
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ANISOTROPY

" Velocity anisotropy g, is a
measure of the difference

between tangential and radial
velocity dispersion
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RESULTS
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RESULTS: CENTRAL BLACK HOLE

= Add a black hole (point mass)
to the dwarf galaxy center
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RESULTS: CENTRAL BLACK HOLE

= Add a black hole (point mass)
to the dwarf galaxy center

= Allows for lower particle mass,
lower halo mass posteriors

10910(Mpr /M)

l0910(MgH/M o)

Fornax

Carina

Model C with central BH

Sculptor

L

Sextans

SEEr

log10(M200/M o)

8 9 10
10910(M200/M o)

10910(M200/M o)

[0 ModelC

3.0

2.5

r2.0

r1.5

l0g10(m22)

|7



EVIDENCE

= Evidence is the sum of likelihood
over the prior volume
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EVIDENCE

= Evidence is the sum of likelihood
over the prior volume

® Note that Ursa Minor has the
smallest number of stars, and is the
most irregular of the dwarfs
analyzed
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CONCLUSIONS

= Particle masses of m<10-2 eV are not kinematically viable in dwarfs unless:
® The Milky Way is an atypical halo.

m  All dwarfs contain a central black hole of mass ~0.1% their halo mass.
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CONCLUSIONS

= Particle masses of m<10-2 eV are not kinematically viable in dwarfs unless:

® The Milky Way is an atypical halo.

m  All dwarfs contain a central black hole of mass ~0.1% their halo mass.

® Particle masses of m>10-20 eV are allowed, but more CDM-like.

= There is no strong preference for any of the models in most dwarfs
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ADDITIONAL MATERIAL

m ULB simulations are done with the Schrodinger-Poisson equations

= Describes a self gravitating quantum superfluid

ot 2
V2V =dr (|¢]? — 1)
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ADDITIONAL MATERIAL

= Start with the collisionless Boltzmann equation, then integrate over [velocity
moments] to get the Spherical Jeans Equation:

d(vu) 2Bz %

dr r dr

® Assume anisotropy is constant over the system, and you get the solution:

o2(R)S(R) = 2/: (1 — Ba(r) fj) ’fégu_f(g;dr

with ¥(R) the projected stellar density, u_,,%(rr) the radial stellar velocity dispersion
profile, R is the projected radial distance from the center

Al



ADDITIONAL MATERIAL: PRIORS

Generalized NFWV:

—1 < —logyo(1 = Ba) < +1,

log((5 x 107) <logig(Mago/Me) < logyg(5 X 109)7

10%10(2) < 10%10(0200) < 10%10(30)7
0.5 <a<3,

Model C ULB:

—1 <logyg(ma22) < 3

M3 (maz) < logyg (Mago/Me) < logyo(5 x 10'7),

A2



ADDITIONAL MATERIAL

Sculptor Hernquist Posterior Samples
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