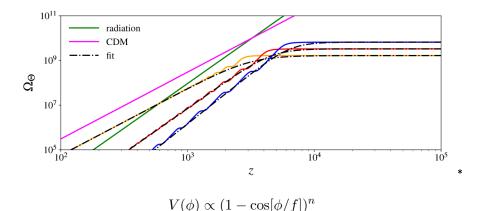
The H_0 and S_8 tensions necessitate early and late time changes to ΛCDM

Steven J. Clark

Brown Theoretical Physics Center Department of Physics, Brown University

> Based Upon: arXiv: 2110.09562

In Collaboration with: Kyriakos Vattis, JiJi Fan, and Savvas M. Koushiappas


2022 Mitchell Conference on Collider, Dark Matter, and Neutrino Physics May 25, 2022 • The H_0 tension: Discrepancy between early and late time measurements of the Hubble Constant.

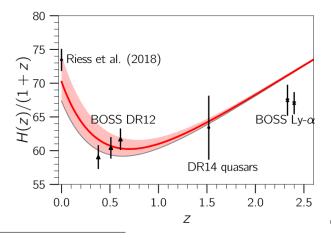
- The H_0 tension: Discrepancy between early and late time measurements of the Hubble Constant.
- S₈: While not to the same level, a discrepancy is forming between local measurements of the amount of structure in the Universe between our direct measurements and those inferred by other methods like CMB analysis.

- The H_0 tension: Discrepancy between early and late time measurements of the Hubble Constant.
- S₈: While not to the same level, a discrepancy is forming between local measurements of the amount of structure in the Universe between our direct measurements and those inferred by other methods like CMB analysis.
- Attempts at resolving these differences have been met with minimal success.

Introduction: Early Dark Energy (EDE)

• A subcomponent of the early Universe composed of dark energy that then undergoes a transition which causes it to dissipate.

* arXiv: 1806.10608


• The Good: A period of EDE has been shown to increase H_0 . Helping to alleviate the Hubble Tension.

- The Good: A period of EDE has been shown to increase H_0 . Helping to alleviate the Hubble Tension.
- The Bad: Results in an increase in structure formation turning a discrepancy into a tension in S₈.

- The Good: A period of EDE has been shown to increase H_0 . Helping to alleviate the Hubble Tension.
- The Bad: Results in an increase in structure formation turning a discrepancy into a tension in S₈.
- The Ugly: This is a general problem with most solutions that attempt to resolve the *H*₀ tension.

Introduction: Decaying Dark Matter (DDM)

• Dark matter decays into one massive and one massless daughter resulting in a shift in the budget equation.

*arXiv: 1903.06220

• The Good: Has the potential to reduce the growth of structure to better align with data.

- The Good: Has the potential to reduce the growth of structure to better align with data.
- The Bad: Does not appreciatively result in an increase to H₀ when fit to data.

- The Good: Has the potential to reduce the growth of structure to better align with data.
- The Bad: Does not appreciatively result in an increase to H₀ when fit to data.
- The Ugly: The decrease to ${\cal S}_8$ needs additional information to be selected.

- The Good: Has the potential to reduce the growth of structure to better align with data.
- The Bad: Does not appreciatively result in an increase to H₀ when fit to data.
- The Ugly: The decrease to ${\cal S}_8$ needs additional information to be selected.
 - This is not surprising considering the time period of both the measurements and the physics.

- The Good: Has the potential to reduce the growth of structure to better align with data.
- The Bad: Does not appreciatively result in an increase to H₀ when fit to data.
- The Ugly: The decrease to ${\cal S}_8$ needs additional information to be selected.
 - This is not surprising considering the time period of both the measurements and the physics.
 - This is also true for many H_0 resolutions.

• While individually, the two models are not able to resolve the tensions, they possess interesting synergies.

- While individually, the two models are not able to resolve the tensions, they possess interesting synergies.
- EDE increases H_0 , but at the expense of also increasing S_8 .
- DDM is unable to increase H_0 , but it does have the capacity to influence S_8 .

- While individually, the two models are not able to resolve the tensions, they possess interesting synergies.
- EDE increases H_0 , but at the expense of also increasing S_8 .
- DDM is unable to increase H_0 , but it does have the capacity to influence S_8 .
- Can a combination of the two yield produce an effect that individually, they are unable to achieve?

Implementation: EDE

• Equation of State

$$w_{\text{EDE}} = w_0 + \frac{w_a}{2} \{1 - \tanh \left[\alpha \log_{10}(a_{\text{EDE}}/a) \right] \}$$

Implementation: EDE

• Equation of State

$$w_{\text{EDE}} = w_0 + \frac{w_a}{2} \left\{ 1 - \tanh\left[\alpha \log_{10}(a_{\text{EDE}}/a)\right] \right\}$$

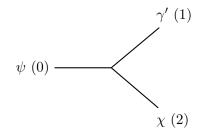
• Perturbations

$$\dot{\delta}_{\text{EDE}} = -\left(1 + w_{\text{EDE}}\right) \left(\theta_{\text{EDE}} + \frac{\dot{h}}{2}\right) - 3(c_s^2 - w_{\text{EDE}})\mathcal{H}\delta_{\text{EDE}}$$
$$-9(1 + w_{\text{EDE}})(c_s^2 - c_a^2)\mathcal{H}\frac{\theta_{\text{EDE}}}{k^2}$$
$$\dot{\theta}_{\text{EDE}} = -\left(1 - 3c_s^2\right)\mathcal{H}\theta_{\text{EDE}} + \frac{c_s^2k^2}{1 + w_{\text{EDE}}}\delta_{\text{EDE}}$$

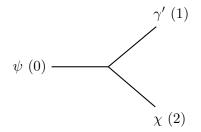
Implementation: EDE

• Equation of State

$$w_{\text{EDE}} = w_0 + \frac{w_a}{2} \left\{ 1 - \tanh\left[\alpha \log_{10}(a_{\text{EDE}}/a)\right] \right\}$$


• Perturbations

$$\dot{\delta}_{\text{EDE}} = -(1+w_{\text{EDE}})\left(\theta_{\text{EDE}} + \frac{\dot{h}}{2}\right) - 3(c_s^2 - w_{\text{EDE}})\mathcal{H}\delta_{\text{EDE}}$$
$$-9(1+w_{\text{EDE}})(c_s^2 - c_a^2)\mathcal{H}\frac{\theta_{\text{EDE}}}{k^2}$$
$$\dot{\theta}_{\text{EDE}} = -(1-3c_s^2)\mathcal{H}\theta_{\text{EDE}} + \frac{c_s^2k^2}{1+w_{\text{EDE}}}\delta_{\text{EDE}}$$


• Sound Speeds

$$c_a^2 = -2 - w_n \qquad c_s^2 = \frac{4a^2 w_n \overline{\omega}^2 + (1 - w_n)k^2}{4a^2 \overline{\omega}^2 + (1 - w_n)k^2}$$
$$w_n = (n - 1)/(n + 1) \qquad \overline{\omega} = \overline{\omega}_0 a^{-3w_n}$$

Implementation: DDM

Implementation: DDM

• Background Density Evolution

$$\begin{aligned} \dot{\overline{\rho}}_0 &= -3\mathcal{H}\overline{\rho}_0 - a\Gamma\overline{\rho}_0 \\ \dot{\overline{\rho}}_1 &= -4\mathcal{H}\overline{\rho}_1 + \epsilon a\Gamma\overline{\rho}_0 \\ \dot{\overline{\rho}}_2 &= -3(1+w_2)\mathcal{H}\overline{\rho}_2 + (1-\epsilon)a\Gamma\overline{\rho}_0 \end{aligned}$$

• Parent

$$\dot{\delta}_0 = -\frac{\dot{h}}{2}$$

• Parent

$$\dot{\delta}_0 = -\frac{\dot{h}}{2}$$

• Massless Daughter

$$\begin{array}{rcl} \dot{(\delta_1 r_1)} &=& -\frac{4}{3} r_1 \theta_1 - \frac{2}{3} r_1 \dot{h} + \dot{r}_1 \delta_0 \\ \\ \frac{4}{3k} (\dot{\theta_1 r_1}) &=& \frac{k}{3} \delta_1 r_1 - \frac{4k}{3} r_1 \sigma_1 \\ \\ \dot{2(\sigma_1 r_1)} &=& \frac{8}{15} \theta_1 r_1 + \frac{4}{15} r_1 (\dot{h} + 6\dot{\eta}) + \mathrm{h.o.} \end{array}$$

Parent

$$\dot{\delta}_0 = -\frac{\dot{h}}{2}$$

• Massless Daughter

$$\begin{array}{rcl} \dot{(\delta_1 r_1)} &=& -\frac{4}{3} r_1 \theta_1 - \frac{2}{3} r_1 \dot{h} + \dot{r}_1 \delta_0 \\ \\ \frac{4}{3k} \dot{(\theta_1 r_1)} &=& \frac{k}{3} \delta_1 r_1 - \frac{4k}{3} r_1 \sigma_1 \\ \dot{2(\sigma_1 r_1)} &=& \frac{8}{15} \theta_1 r_1 + \frac{4}{15} r_1 (\dot{h} + 6\dot{\eta}) + \text{h.o.} \end{array}$$

- Note that it is the same as the non decaying version apart from a non-zero $\dot{r}_1 \propto \Gamma$

• Massive Daughter

$$\dot{\delta}_2 = -3\mathcal{H}(c_{sg}^2 - w_2)\delta_2 - (1 + w_2)\left(\theta_2 + \frac{\dot{h}}{2}\right) + (1 - \epsilon)a\Gamma\frac{\overline{\rho}_0}{\overline{\rho}_2}\left(\delta_0 - \delta_2\right)$$

$$\dot{\theta}_2 = -\mathcal{H}(1-3c_g^2)\theta_2 + \frac{c_{sg}^2}{1+w_2}k^2\delta_2 - k^2\sigma_2 - (1-\epsilon)a\Gamma\frac{1+c_g^2}{1+w_2}\overline{\rho}_2\theta_2$$

$$c_{sg}^2 \equiv \delta P_2 / \delta \rho_2 \qquad \qquad c_g^2 \equiv \dot{\overline{P}}_2 / \dot{\overline{\rho}}_2$$

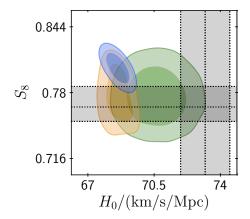
• Massive Daughter


$$\dot{\delta}_2 = -3\mathcal{H}(c_{sg}^2 - w_2)\delta_2 - (1 + w_2)\left(\theta_2 + \frac{\dot{h}}{2}\right) + (1 - \epsilon)a\Gamma\frac{\overline{\rho}_0}{\overline{\rho}_2}\left(\delta_0 - \delta_2\right)$$

$$\dot{\theta}_2 = -\mathcal{H}(1-3c_g^2)\theta_2 + \frac{c_{sg}^2}{1+w_2}k^2\delta_2 - k^2\sigma_2 - (1-\epsilon)a\Gamma\frac{1+c_g^2}{1+w_2}\overline{\rho}_2\theta_2$$

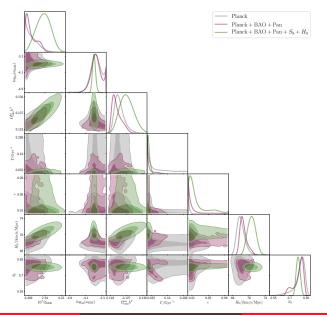
$$c_{sg}^2 \equiv \delta P_2 / \delta \rho_2 \qquad \qquad c_g^2 \equiv \dot{\overline{P}}_2 / \dot{\overline{\rho}}_2$$

• Once again, reduces to warm dark matter equation when $\Gamma = 0$.


Results: Model Comparison

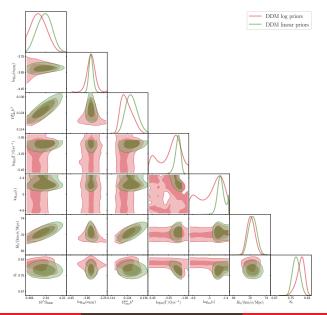
S. J. Clark (steven_j_clark@brown.edu)

EDE + DDM


Results: Model Comparison

Results: Model Comparison - Figure Main Points

- (Note: not shown) While EDE does provide an increase to the preferred value of H_0 , with large scale structure data included, this increase is greatly suppressed.
- DDM results in a reduction to S₈ without changing the matter densities much.
- Using EDE + DDM, both H_0 and S_8 discrepancies are reduced.
- The selection of the lower Γ region in EDE + DDM is a combined effect of increased matter to satisfy H_0 , leads to a larger ϵ to satisfy S_8 . With this combination, the lensing potential prefers lower Γ as it is more sensitive to changes in ϵ .


Results: Dataset Comparison

EDE + DDM

- Planck measurements alone do not constrain the model well as expected as EDE and DDM separately at best have a mild preference.
- BAO + Pantheon do not improve much. But, in S_8 Γ two branches form representing the Λ CDM degenerate region, and a second branch with substantial decays.
- With the S_8 and H_0 priors, the lower branch is selected.

Results: Search Parameter Comparison

S. J. Clark (steven_j_clark@brown.edu)

EDE + DDM

Results: Search Parameter Comparison - Figure Main Points

- In many works involving DDM, the DDM parameters are performed in log scale.
- Because the model is not preferred over the base model (Λ CDM), large degeneracies are produced.
- These degenerate regions are effected by the choice of prior and can mask features.

- The difficulty in resolving H_0 and S_8 may be an indicator that alteration need to be done at multiple cosmological periods.
- Individually, EDE and DDM are unable to resolve both tensions.
- However, together, their synergistic properties allow them to overcome their individual weaknesses and produce an overall improved result.
- This is just one example, and more work needs to be done on the strengths of multiple adjustments.

Thank You!

Model	ΛCDM	$\Lambda CDM + DDM$	$\Lambda CDM + EDE$
Dataset	$Planck + BAO + Pan + S_8 + H_0$		
$100 \Omega_b h^2$	$2.260^{+0.013}_{-0.013}$	$2.261^{+0.014}_{-0.014}$	$2.275^{+0.020}_{-0.020}$
100 θ_s	$1.04211^{+0.00029}_{-0.00028}$	$1.04211 \substack{+0.00028 \\ -0.00029}$	$1.04164^{+0.00039}_{-0.00036}$
$\ln(10^{10}A_s)$	$3.048^{+0.014}_{-0.015}$	$3.044^{+0.016}_{-0.018}$	$3.052^{+0.014}_{-0.015}$
n_s	$0.9716^{+0.0038}_{-0.0036}$	$0.9719_{-0.0039}^{+0.0039}$	$0.9794_{-0.0065}^{+0.0060}$
$\tau_{ m reio}$	$0.0581^{+0.0071}_{-0.0078}$	$0.0567^{+0.0076}_{-0.0084}$	$0.0569^{+0.0068}_{-0.0079}$
$\Omega_{\rm cdm}^{\rm ini} h^2$	$0.11748^{+0.00080}_{-0.00083}$	$0.1175^{+0.0009}_{-0.0010}$	$0.1230^{+0.0029}_{-0.0036}$
Γ/Gyr^{-1}	-	Unconstrained	-
ϵ	-	< 0.00476	-
$10^7 \Omega_{\rm EDE}$	-	-	$1.41^{+0.68}_{-0.81}$
$\log_{10}(a_{\rm EDE})$	_	_	$-3.68\substack{+0.10\\-0.12}$
$H_0/(\mathrm{km/s/Mpc})$	$68.58^{+0.38}_{-0.38}$	$68.60^{+0.46}_{-0.42}$	$70.18^{+0.87}_{-1.05}$
S_8	$0.8039^{+0.0090}_{-0.0092}$	$0.777^{+0.016}_{-0.019}$	$0.812^{+0.010}_{-0.011}$
m	28	30	30
AIC	3938.70	3935.32	3936.96
ΔΑΙΟ		-3.38	-1.74

Model	$\Lambda CDM + DDM + EDE$			
Dataset	$Planck + BAO + Pan + S_8 + H_0$	Planck	Planck + BAO + Pan	
$100 \Omega_b h^2$	$2.275^{+0.020}_{-0.020}$	$2.239^{+0.018}_{-0.021}$	$2.251^{+0.015}_{-0.019}$	
100 θ_s	$1.04138 \substack{+0.00041 \\ -0.00039}$	$1.04163^{+0.00039}_{-0.00033}$	$1.04177^{+0.00040}_{-0.00032}$	
$\ln(10^{10}A_s)$	$3.064^{+0.015}_{-0.017}$	$3.053^{+0.016}_{-0.016}$	$3.052^{+0.013}_{-0.017}$	
n_s	$0.9825^{+0.0063}_{-0.0066}$	$0.9679^{+0.0051}_{-0.0074}$	$0.9710^{+0.0042}_{-0.0068}$	
$\tau_{ m reio}$	$0.0594^{+0.0072}_{-0.0082}$	$0.0559^{+0.0076}_{-0.0081}$	$0.0570^{+0.0063}_{-0.0079}$	
$\Omega_{\rm cdm}^{\rm ini} h^2$	$0.1273_{-0.0042}^{+0.0036}$	$0.1231^{+0.0016}_{-0.0035}$	$0.1217^{+0.0015}_{-0.0032}$	
Γ/Gyr^{-1}	< 0.0172	< 0.138	< 0.0256	
ϵ	< 0.0160	< 0.00527	< 0.0184	
$10^7 \Omega_{\rm EDE}$	$2.16^{+0.81}_{-0.87}$	< 1.09	< 1.00	
$\log_{10}(a_{\rm EDE})$	$-3.691\substack{+0.064\\-0.076}$	$-3.61^{+0.26}_{-0.28}$	$-3.61^{+0.24}_{-0.26}$	
$H_0/(\mathrm{km/s/Mpc})$	$70.64\substack{+0.96 \\ -1.04}$	$68.00^{+0.67}_{-1.19}$	$68.61^{+0.54}_{-1.04}$	
S_8	$0.776^{+0.017}_{-0.019}$	$0.792^{+0.060}_{-0.021}$	$0.780^{+0.056}_{-0.016}$	
m	32	31	32	
AIC	3931.98	2840.22	3926.72	
ΔAIC	-6.72	_	_	