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Future Experimental 𝝂
Physics

• Goal:
• Extract 𝜈 oscillation parameters

• Implications
• Leptogenesis, cross sections, 𝜏 production, 

BSM, Non-Standard Interactions

• Challenges
• Broadband 𝜈 spectra

• Unknown initial 𝜈 energy
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Water Cherenkov 
Detectors

• Super & Hyper-Kamiokande’s
technology
• Well understood, battle tested
• Huge masses, statistics

• Oxygen as nuclear target
• “Simple” symmetric nucleus

• Reconstruct particle 
momenta from Cherenkov 
rings
• High proton thresholds
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Liquid Argon Time Projection Chambers

• DUNE’s technology

• Argon as target
• Complex nucleus

• Ionization of LAr for 
track reconstruction
• Low proton 

thresholds
• 𝑑Q/𝑑𝑠~𝑑𝐸/𝑑𝑠 for 

calorimetry
• 𝛾/𝑒 separation power

Animation from Bo Yu (BNL)
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Khachatryan, M., Papadopoulou, A., Ashkenazi, A. et al. Nature 599, 565–570 (2021)

Adapted from A. Ashkenazi and A. Papadopoulou

https://www.nature.com/articles/s41586-021-04046-5#Abs1


How do we measure oscillation parameters?
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Nature 599, 565–570 (2021)
Phys. Rev. D 91, 072010 (2015)Adapted from A. Ashkenazi and A. Papadopoulou

Measure 𝜈 interaction counts in our detectors…
Must use an interaction model to deconvolve the 𝜈 flux

𝑁𝛽 𝐸𝑟𝑒𝑐 , 𝐿 = නΦ𝛽 𝐸true, 𝐿 𝜎 𝐸true 𝑅𝜎 𝐸true, 𝐸rec 𝑑𝐸
measured 𝜈 flux interaction model

Required!

Φ𝛽 𝐸, 𝐿 ∝ 𝑃𝜈𝛼→𝜈𝛽 𝐸, 𝐿 Φ𝛼 𝐸,~0

Near detector 
constraint

∝ Oscillation 

parameters!

https://www.nature.com/articles/s41586-021-04046-5#Abs1
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072010


Generate w/GiBUU, Reconstruct with GiBUU

Phys. Rev. D 89, 073015 (2014)

Generate w/GiBUU, Reconstruct w/GENIE

𝟖
𝟏𝟔𝑶

True 
input 
point

Best 
fit!

Adapted from A. Papadopoulou

• Leads to 
misreconstruction

• Misinterpretations 
of experimental 
results!
• Bad oscillation 

parameters
• Fake systematic 

effects?
• New physics?

Implications 
of 

Mismodeling
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.073015


The Charged Lepton 
Strategy

8𝑒4𝜈 Webpage

https://www.e4nu.com/
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𝒑

𝝁

𝝂 ~Unknown incoming 
neutrino energy

Definitive initial 
energy 

knowledge 
limited by 

observable final 
state

Must Reconstruct Initial 𝝂 Energy

Generic detector
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𝒑

𝒆′

𝒆

Most final state 
particles have 

well understood 
kinematics via 
curvature and 
calorimetry

Utilizing Electron Scattering
Identical Topologies with Precision Beams

~Exactly known incoming 
electron energy

Generic detector



11

𝒑

𝝁

𝝁′

Initial 
energy 

knowledge 
not limited 

to only
“final state” 

particles

Use cosmic 
𝜇± in situ!

Generic detector

Utilizing Cosmic Muon Scattering
Identical Topologies with Broad Spectra
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𝒑

𝝁

𝝁′

Initial 
energy 

knowledge 
not limited 

to only
“final state” 

particles

Multiple Coulomb scattering

Momentum resolution is 
~11-15% for 𝑝𝜇 < 2GeV/c

Generic detector

https://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10010
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𝒑

𝝁

𝝁′

Idea can be 
extended to 

Water 
Cherenkov 
detectors

𝑝 likely 

below 
threshold

𝝁

𝝁′

𝒓 𝝁 − 𝒓 𝝁′ ∝ 𝝎

𝑹 𝝁, 𝝁′ ∝ 𝒒 ∝ 𝒑𝒑

𝒓 𝝁

𝒓 𝝁′

𝑹 𝝁, 𝝁′

Generic 
Cherenkov 
detector



Why Charged Leptons?

•Similar interactions with nuclei
• Single boson exchange via

• Vector (𝑽) EM interaction

𝑗𝜇
𝐸𝑀 = ത𝑢𝜸𝝁𝑢

• Vector minus axial vector   
(𝑽 − 𝑨) EW CC interaction

𝑗𝜇
𝐸𝑊±

= ത𝑢
−𝑖𝑔𝑊

2 2
𝜸𝝁 − 𝜸𝝁𝜸𝟓 𝑢
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𝑁 𝑁

ℓ± ℓ±

𝜸

EM QE

Adapted from L. Weinstein Phys. Rev. D 103, 113003 (2021)

𝑛 𝑝

𝜈ℓ ℓ−

𝑾

CC QE

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


  

ds

dw

• Precision oscillation 
programs will 
require many 
processes to be 
well modeled

• Need input on all 
from electron 
scattering!
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Improving Discrete Aspects of Modeling
⟹ 𝜎𝑖 𝐸 𝑅𝜎𝑖 𝐸, 𝐸𝑟𝑒𝑐

Quasielastic (QE)
Meson Exchange 
Current (MEC)

Resonance (RES)
Deep Inelastic 

Scattering (DIS)



CLAS6

CLAS12
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Recent            Results

17𝑒4𝜈 Webpage

https://www.e4nu.com/


CLAS6 Data Mining

• Past CLAS6 data sets used

• Large acceptance: 𝜃𝑒 > 15°
• “~50% of 4𝜋” coverage

• Charged particle thresholds 
similar to 𝜈 detectors

• 𝐸𝑒: 1.1,2.2,4.4 GeV

• Targets: 4He, 12C, 56Fe

• Lead to 𝑒4𝜈’s recent          
Nature publication on 1𝑝0𝜋

18Adapted from A. Papadopoulou

https://www.nature.com/articles/s41586-021-04046-5#Abs1


Inclusive 𝑨 𝒆, 𝒆′ Data Comparisons
• Consistent 𝜈ℓ, ℓ modeling now implemented

• Can compare to world inclusive QE electron scattering data

• Any misconstrued behavior here won’t work for 𝜈s either!

• Much work to do!
• Must build better models, constrain any free parameters!
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Fe(𝒆, 𝒆’): 0.961 GeV at 37.5°

Phys. Rev. D 103, 113003 (2021)

× 103

C(𝒆, 𝒆’): 3.595 GeV at 16°

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.113003


QE-like Energy Reconstruction in 𝝂 Experiments

• Goal: reconstruct 𝐸𝜈,true
• Methodology:

• Extract 𝐸𝑒 like 𝐸𝜈 would be
• Choose 0𝜋 events
• Weight electron events by 𝑄4, 

accounting for propagator

• Detector types play a role
• May use only lepton variables
• …assume pure QE
• …others have lower thresholds

20Adapted from L. Weinstein and A. Papadopoulou

Tracking (LArTPCs)
𝑬𝒄𝒂𝒍 = 𝑬𝒆 + 𝑻𝒑 + 𝝐𝑩

𝑬𝑸𝑬
𝑪𝒉. =

𝟐𝑴𝑵𝝐𝑩 + 𝟐𝑴𝑵𝑬ℓ −𝒎ℓ
𝟐

𝟐 𝑴𝑵 − 𝑬ℓ + 𝒌ℓ 𝐜𝐨𝐬𝜽ℓ

Cherenkov



Energy Reconstruction Issues
Water Cherenkov Detectors: QE Assumption

• Generally lacking reconstruction of beam 𝐸𝑒
• No access to final state baryons (below threshold)

• Strength issues
• Overestimation of QE peak

• Overestimation of RES tail
21Nature 599, 565–570 (2021)

𝑬𝑸𝑬
𝑪𝒉. =

𝟐𝑴𝑵𝝐𝑩 + 𝟐𝑴𝑵𝑬ℓ −𝒎ℓ
𝟐

𝟐 𝑴𝑵 − 𝑬ℓ + 𝒌ℓ 𝐜𝐨𝐬𝜽ℓ

https://www.nature.com/articles/s41586-021-04046-5#Abs1


• Calorimetric sum over all visible particles (lower thresholds)

• Better agreement with beam 𝐸𝑒 ⟷ QE peak quite narrow

• Relatively consistent behavior for QE-like signals
• Overestimate of QE peak, tail overshoots due to RES and DIS

• DUNE will rely on more than QE, need RES!
22Nature 599, 565–570 (2021)

Tracking (LArTPCs)
𝑬𝒄𝒂𝒍 = 𝑬𝒆 + 𝑻𝒑 + 𝝐𝑩

Energy Reconstruction Issues
Tracking/Calorimetric Detectors: Summation

https://www.nature.com/articles/s41586-021-04046-5#Abs1


Support 
Letters

New Results at CLAS12

23



Improvements Over CLAS6

• Monoenergetic beams for 2.1,4.0,6.0 GeV

• 𝜈-relevant targets: C, Ar, Ca

• High luminosity (~10X > CLAS6)

• High angular acceptance: 𝜃𝑒 > 5°
• Access very low 𝑄2 at lower beam energies

• Good particle identification, lower thresholds + NEUTRONS!

24

Near 
Detector

Far 
Detector
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1𝑝 MC
(scaled to unity)

1𝑝 Data
(scaled to unity)

1𝑛 MC
(scaled to unity)

1𝑛 Data
(scaled to unity)

Initial Comparisons to Simulation
Showing Unphysical Differences?



Future 𝒆𝟒𝝂 Analyses
• Inclusive multidifferential cross sections: C, Ar, Ca

• Access to many angles, many energies, low 𝑄2

• Create a new world-level data sets

• Inclusive/Exclusive multidifferential cross sections

• 𝑒, 𝑒′ , 𝑒, 𝑒′𝑝 , 𝑒, 𝑒′𝜋± , 𝑒, 𝑒′𝑝𝜋− , 𝑒, 𝑒′𝑝𝑝 , 𝑒, 𝑒′𝑛 , 𝑒, 𝑒′𝑝𝑛 …
• “Traditional” kinematic variable for first GENIE tunings
• Transverse kinematic variables (FSIs, nuclear models)

• Transparency studies (FSIs)

• Ca/Ar ratios

• Spectral functions, nuclear models
26



Goals of the Initiative

27



Goals of 𝝁𝟒𝝂
•Use cosmic 𝜇 interactions (like 𝑒!)

•Trigger on topologies of interest online
•Utilize low level DAQ outputs (“hits”)

•Develop specific trigger algorithms
• Michel electrons from decays (𝜇+ → 𝑒+ + 𝜈𝜇 + 𝜈𝑒)

• QE-like proton(s) events (𝝁 + 𝑨𝒓 → 𝝁 +𝑵𝒑 + 𝑿)

• 𝑛 → ത𝑛…

•Preselection saves data processing, disk
28
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Reconstructing cosmic muon scatter events in MicroBooNE

Multiprong (4) 
QE-like 

candidate

Courtesy of A. Furmanski

𝝁

Run 1, Event 4261164

https://microboone-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=22777&filename=Reconstructing%20cosmic%20muon%20scatter%20events%20in%20MicroBooNE%20.pdf&version=1
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Reconstructing cosmic muon scatter events in MicroBooNE

Multiprong (3) 
QE-like 

candidate

𝒑

Primary focus

Courtesy of A. Furmanski Cartoon display

𝝁

https://microboone-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=22777&filename=Reconstructing%20cosmic%20muon%20scatter%20events%20in%20MicroBooNE%20.pdf&version=1


Potential Ramifications of 𝝁𝟒𝝂
Scattering Studies In Situ

•Use identical final states between 𝜇 and 𝜈 probes
• Reconstructed energy comparisons in situ

• Care about energy just before/after interaction

• Offer online calibration

•QE-like candidates offer simplicity
• Better understandings of 𝐸 reconstruction

• Other topologies possible

•Cosmic 𝜇 + Ar cross sections (potentially)
31
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Consider some 
multiprong topology to 
be reconstructed via 
“hits” on our wires

Hits

𝝁

𝒑

𝝁
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Vertex found!

We want to be able to 
identify the multiprong 

topology’s vertex

Truth 
Track

Hits

𝝁

𝒑

𝝁
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Extra hits from 
wire noise or 

background tracks 
make this picture 
more complicated

Truth 
Track

Hits

𝝁

𝒑

𝝁
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Treat all hits as 
potential vertices
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Treat all hits as 
potential vertices
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Treat all hits as 
potential vertices

But only ~𝟏 true 
vertex hit!
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How to test this?
Measure angles to all 

other hits!

False vertex
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False vertices lead to 
many potential angles, 
mostly outside some 

angular tolerance
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Require certain number 
of hits to be within some 
angular tolerance, take 

an average

~𝟓°

~𝟓°

~𝟓°
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Most will have large 
enough angular 

differences to be outside 
angular tolerance
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This greatly limits the 
number of possible tracks of 
particular angles which can 

be triggered on
→ 𝐑𝐞𝐪𝐮𝐢𝐫𝐞 ≥ 𝟑 𝐟𝐨𝐫 𝐦𝐮𝐥𝐭𝐢𝐩𝐫𝐨𝐧𝐠!
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True vertex
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~𝟓°

~𝟓°

~𝟓°
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Vertex found!

This greatly limits the 
number of possible tracks of 
particular angles which can 

be triggered on
→ 𝐑𝐞𝐪𝐮𝐢𝐫𝐞 ≥ 𝟑 𝐟𝐨𝐫 𝐦𝐮𝐥𝐭𝐢𝐩𝐫𝐨𝐧𝐠!

Original idea developed in conversation with A. Ashkenazi
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Including 
high ADC 

requirements 
makes this 
selection 

more pure
𝝁

𝒑

𝝁



Expected QE-like Data Rates

•QE-like proton (𝜇 + Ar → 𝑝 + 𝜇 + 𝑋) candidates

• Assume QE EM cross section

•Estimate simulated with cosmic flux:

•~4000 cosmic 𝜇 per second

•~1Hz true QE interactions above threshold

49Courtesy of A. Ashkenazi and W. Van De Pontseele CORSIKA

https://www.iap.kit.edu/corsika/


Monte Carlo Data View
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MicroBooNE Simulation

All Planes

0

0

0

0

0

0

ADC Peak



Triggering on Multiprong Events in Monte Carlo
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MicroBooNE Simulation

0

0

0

0

0

0

ADC Peak

Induction
Plane 2

4-prong crossing 
𝝁 events 
correctly 
identified



Real Data View
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MicroBooNE Data 0

0

0

0

0

0

ADC Peak

0



Conclusions
• ℓ± scattering is a powerful proxy to 𝜈 interactions

• 𝑒: Well constrained kinematics, systematics
Plethora of data available for tuning 𝜈 event generators

• ℓ±:Useful for testing energy reconstruction techniques
Informs interaction model!

Tune mutual vector part of interactions

• Cosmic 𝜇 provide in situ opportunities at our detectors
• Similar final state topologies to 𝜈 interactions

• More kinematic information than initially invisible 𝜈

• Test each detector’s 𝐸 reconstruction directly!
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Thank-you for your attention!

Questions?
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