Probing CP-violation in the Higgs Sector

Texas A&M 2022 - 26th May 2022 Dorival Gonçalves

At LHC CPV HVV interaction is already extensively tested (clean target H→4leptons) 41: Gritsan, Melnikov, Schulze, et al '12 WBF: Englert, DG, Mawatari, Plehn '12

$$\mathcal{L}_{0} = g_{1}^{(0)} H V_{\mu} V^{\mu} - \frac{g_{2}^{(0)}}{4} H V_{\mu\nu} V^{\mu\nu} - \frac{g_{3}^{(0)}}{4} A V_{\mu\nu} \widetilde{V}^{\mu\nu}$$

While CP-odd HVV is loop suppressed, CP-odd Hff can manifest at tree-level:

Mixture possible in some models, e.g., 2HDM

- Not excluded from Higgs measurements
 - Top quark is an obvious candidate

$$\mathcal{L} \supset -\frac{m_f}{v} Kh \bar{f}(\cos \alpha + i\gamma_5 \sin \alpha) f$$

ttH: Buckley, **DG** (PRL '15) GF: Dolan, Harris, Jankowiak, Spannowsky 14' taus: Harnik, Martin, Okui, Primulando, Yu 13'

Indirect EDM constraints

Brod, Haisch, Zupan (2013); Engel, Ramsey-Musolf, Kolck (2013); Cirigliano, Dekens, Vries, Mereghetti (2016)

Indirect collider constraints

Complementary top-Higgs CP measurement at LHC:

Loop-induced: indirect constraints

Bottom line:

Analogously to <u>direct</u> yt signal strength measurement the direct top-Higgs CP structure has in the ttH channel its most natural path

Plehn, Rainwater, Zeppenfeld (2001) Zeppenfeld, Kubocz, Campanario (2010) Englert, **DG**, Mawatari, Plehn (2012) Dolan, Harris, Jankowiak, Spannowsky (2014)

Direct CP measurement of Higgs-top coupling

ttH channel observation (2018):

Opportunity: direct measure Higgs-top CP structure at the LHC

 $\mathcal{L} \supseteq -rac{m_t}{v} K ar{t} \left(\cos lpha + i \gamma_5 \sin lpha
ight) t \; H$

Dorival Gonçalves

Directly Probing the CP-structure of the Higgs-Top Yukawa at HL-LHC and Future Colliders

Rahool Kumar Barman,¹ Morgan E. Cassidy,² Zhongtian Dong,²

Dorival Gonçalves,¹ Jeong Han Kim,³ Felix Kling,⁴ Kyoungchul Kong,²

Ian M. Lewis,² Yongcheng Wu,¹ Yanzhe Zhang,² and Ya-Juan Zheng²

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity	
$ lpha \lesssim 36^\circ \ [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	HL-LHC	$3~{ m ab}^{-1}$	
$ lpha \lesssim 25^\circ \ [2]$	$t\bar{t}(h \rightarrow \gamma \gamma)$ combination	HL-LHC	$3~{ m ab}^{-1}$	
$ lpha \lesssim 3^\circ \ [1]$	dileptonic $t\bar{t}(h \rightarrow b\bar{b})$	$100 { m TeV FCC}$	$30~{ m ab}^{-1}$	
$ lpha \lesssim 9^\circ$ [3]	semileptonic $t\bar{t}(h\to b\bar{b})$	$10~{ m TeV}~\mu^+\mu^-$	$10 \mathrm{~ab^{-1}}$	
$ lpha \lesssim 3^\circ$ [3]	semileptonic $t\bar{t}(h \to b\bar{b})$	$30 { m TeV} \mu^+\mu^-$	$10 \mathrm{~ab^{-1}}$	

arXiv:2203.08127

Snowmass White Paper: Prospects of CP-violation measurements with the Higgs boson at future experiments

TABLE I: List of expected precision (at 68% C.L.) of CP-sensitive measurements of the parameters f_{CP}^{HX} defined in Eq. (2). Numerical values are given where reliable estimates are provided, \checkmark mark indicates that feasibility of such a measurement could be considered.

Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$
E (GeV)	14,000	14,000	250	350	500	$1,\!000$	125	125	≥ 500
$\mathcal{L}~(\mathrm{fb}^{-1})$	300	3,000	250	350	500	1,000	250		
HZZ/HWW	$2 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark
$H\gamma\gamma$	_	0.50	_	_	_	_	0.06	_	_
$HZ\gamma$	_	~ 1	_	_	_	_	_	_	_
Hgg	0.20	0.06	_	_	_	_	_	_	_
$Htar{t}$	0.24	0.05	_	_	0.29	0.08	_	_	\checkmark
H au au	0.07	0.008	0.01	0.01	0.02	0.06	\checkmark	\checkmark	\checkmark
$H\mu\mu$	_	_	_	_	_	_	_	\checkmark	_

arxiv:2205.07715

Top Quark is Unique

Bottom quark is several orders of magnitude behind:

Top polarization directly observable via angular distributions of its decay products

$$\frac{1}{\Gamma_f} \frac{d\Gamma_f}{d\cos\theta_f} = \frac{1}{2} (1 + \omega_f \cos\theta_f) \qquad \frac{l^+, \overline{d} \quad b \quad \overline{\nu}, u}{\omega_f \quad 1 \quad -0.4 \quad -0.3}$$

Spin analyzing power: maximum for charged leptons

Spin correlations of top and anti-top affected by nature of interaction

Spin correlations of top and anti-top affected by nature of interaction

Dorival Gonçalves

Spin correlations of top and anti-top affected by nature of interaction

Spin correlations of top and anti-top affected by nature of interaction

Buckley, DG (PRL '15)

Boosted Higgs study nicely match with Higgs-top CP-measurement $h \to b \bar{b}$

CP sensitive observables

CPV observables best defined at the top pair rest frame:

 $d\sigma(gg \to t(n_t)\bar{t}(n_{\bar{t}})H) = \sin^2 \alpha f_1(p_i.p_j) + \cos^2 \alpha f_2(p_i.p_j) + \sin \alpha \cos \alpha \sum g(p_i.p_j)\epsilon_l$

DG, Kong, Kim '18 & '21, Barman, DG, Kling '21

Dorival Gonçalves

CP sensitive observables

CPV observables best defined at the top pair rest frame:

 $d\sigma(gg \to t(n_t)\bar{t}(n_{\bar{t}})H) = \sin^2 \alpha f_1(p_i.p_j) + \cos^2 \alpha f_2(p_i.p_j) + \sin \alpha \cos \alpha \sum g(p_i.p_j)\epsilon_l$

$$\epsilon_{\mu\nu\rho\sigma} p^{\mu}_{a} p^{\nu}_{b} p^{\rho}_{c} p^{\sigma}_{d} = E_{a} \overrightarrow{p_{b}} \cdot (\overrightarrow{p_{c}} \times \overrightarrow{p_{d}}) + E_{c} \overrightarrow{p_{d}} \cdot (\overrightarrow{p_{a}} \times \overrightarrow{p_{b}}) -E_{b} \overrightarrow{p_{c}} \cdot (\overrightarrow{p_{d}} \times \overrightarrow{p_{a}}) - E_{d} \overrightarrow{p_{a}} \cdot (\overrightarrow{p_{b}} \times \overrightarrow{p_{c}})$$

 $\epsilon(p_t, p_{\bar{t}}, p_{\ell^+}, p_{\ell^-})|_{t\bar{t}\ CM} \propto p_t \cdot (p_{\ell^+} \times p_{\ell^-})$

Top Reconstruction

Full reconstruction of the top pair system is required to maximize CP-sensitivity

Combinatorial ambiguities and presence of up to two neutrinos makes reconstruction challenging

DG, Kong, Kim '18 & '21, Barman, DG, Kling '21

Top Reconstruction

To obtain top momenta M2 method: based on mass minimization, being more flexible for BSM studies

Debnath, Kim, Kong, Matchev '17 DG, Kong, Kim '18 Reconstruction of the Higgs: BDRS

Reconstruction of top momenta: Optimass

- a) guess neutrino momenta
- b) solve combinatorial problem

Generalization of MT2 with mass constraints:

$$egin{aligned} M_{2CW}^{(b\ell)} &\equiv \min_{ec{q_1},ec{q_2}} \left\{ \max\left[M_{t_1}(ec{q_1}, ilde{m}), \; M_{t_2}(ec{q_2}, ilde{m})
ight]
ight\} \ ec{q_{1T}} + ec{q_{2T}} &= ec{P_T} \ M_{t_1} &= M_{t_2} \ M_{W_1} &= M_{W_2} = m_W \end{aligned}$$

Top Reconstruction

To obtain top momenta M2 method: based on mass minimization, being more flexible for BSM studies

The wrong partition often violates the end-points: Optimass uses it to pick up correct one

M_{2CW} [GeV]

Reconstruction method is purely based on mass minimization: It is less sensitive to BSM modifications

DG, Kong, Kim (2018)

Texas A&M - 05.26.2022

Machine Learning the Higgs-Top CP Phase

Sensitivity on nonlinear BSM terms can be quantified through modified Fisher information:

Brehmer, Dawson, Homiller, Kling, Plehn '19

$$I' = \mathbb{E}\left[\frac{\partial \log p(x|\kappa_t^2, \alpha^2)}{d\alpha^2} \frac{\partial \log p(x|\kappa_t^2, \alpha^2)}{d\alpha^2}\right]$$

 $p(x|\kappa_t, \alpha)$ is the event likelihood, $\mathbb{E}[.]$ is the expectation value at SM.

Barman, DG, Kling '21

Information increases with successive addition of observables — Multivariate analysis problem

Machine Learning the Higgs-Top CP Phase

Recent
$$h \to \gamma \gamma$$
 study:

→ Higgs-top CP phase could be probed up to $\alpha \lesssim 13^{\circ}$

Barman, DG, Kling '21

HL-LHC & FCC-hh Projections

$$\bigcirc$$
 Recent $h \to b\overline{b}$ study:

HL-LHC: $\alpha \lesssim 22^{\circ}$

FCC-hh: $\alpha \lesssim 1^{\circ}$

DG, Kong, Kim, Wu '21 Mangano, Plehn, Reimitz, Schell, Shao '15

The search for new sources of CPV is a cornerstones for the LHC program and forthcoming experiments, such as FCC, muon collider, ...

- Higgs-top coupling can naturally display larger CP-phases than HVV
- Direct probe: ttH channel
- Boosted Higgs analysis nicely match with CP-measurement
- " "Machine learning problem"
- t-quark polarization uplifts analysis from raw rate to polarization study

Work in collaboration with

KC Kong (Kansas)

Felix Kling (DESY)

Kim Jeoghan (CBNU-Korea)

Rahool K. Barman (OSU) Yongcheng Wu (OSU -> Faculty Nanjing)

Dorival Gonçalves

Demartin, Maltoni, Mawatari, Zaro (2015) Englert, Re (2014)

Extended Scalar Sectors

Seeking for light pseudoscalars: ttA(bb) can <u>direct</u> access the Yukawa and explore low m_A

Azevedo, Capucha, Gouveia, Onofre, Santos (2020)

> We can probe the CP structure in a similar fashion to the 125 GeV particle