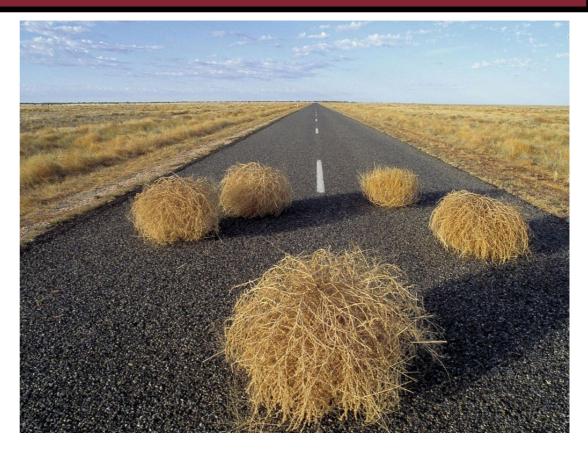
Tumblers: A Novel Collider Signature for Long-Lived Particles

Brooks Thomas <u>LAFAYETTE</u> COLLEGE



Based on work done in collaboration with:

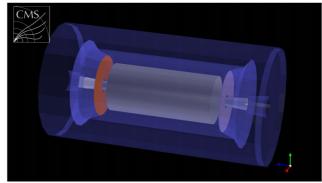
• Keith Dienes, Doojin Kim, and Tara Leininger [arXiv:2108.02204]

Mitchell Workshop 2022, May 25th, 2022

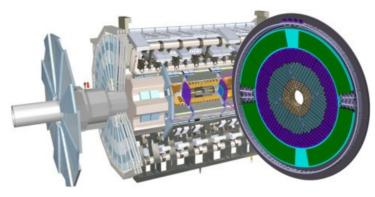
Long-Lived Particles

- Long-lived particles (LLPs) arise in many extensions of the SM.
- •LLPs with lifetimes $O(1 \text{ mm}) \lesssim c\tau \lesssim O(100 \text{ m})$ can give rise to macroscopically <u>displaced vertices</u> (DVs) at colliders.
- Search channels involving DVs have very *low SM backgrounds* and thus represent a promising experimental probe of new physics.
- Several dedicated searches for excesses in channels involving one or more DVs have already been performed at the LHC.
- During the HL-LHC upgrade, additional apparatus will be installed in both the ATLAS and CMS detectors which enhances their physics performance with regard to DVs. [Liu, Liu, Wang: 1805.05957; Liu, Liu, Wang, Wang: 2005.10836; Flowers, Meier, Rogan, Kang, Park: 1903.05825]

CMS: Barrel Timing Layer, High-Granularity Calorimeters

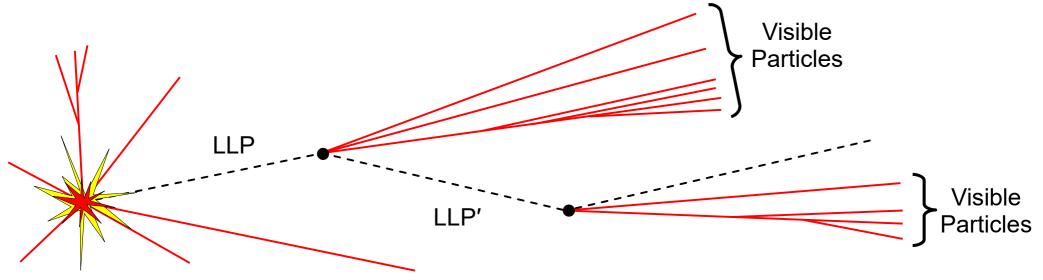


ATLAS: Encap Timing Detectors, High-Granularity Calorimeters



Tumblers

- The analysis of LLP signatures has generally focused on the case in which each LLP decays to final states involving one or more detectable SM particles – plus perhaps additional invisible particles.
- However, in scenarios in which there exist <u>multiple LLP species</u>, another possibility arises: LLPs which decay to finals states involving both SM particles and <u>other, lighter LLPs</u>.
- Multiple, sequential decays of different LLP species along the same decay chain can give rise to multiple DVs.
- We call a sequence of DVs which result from successive decays of LLPs within the same decay chain a "<u>tumbler</u>."

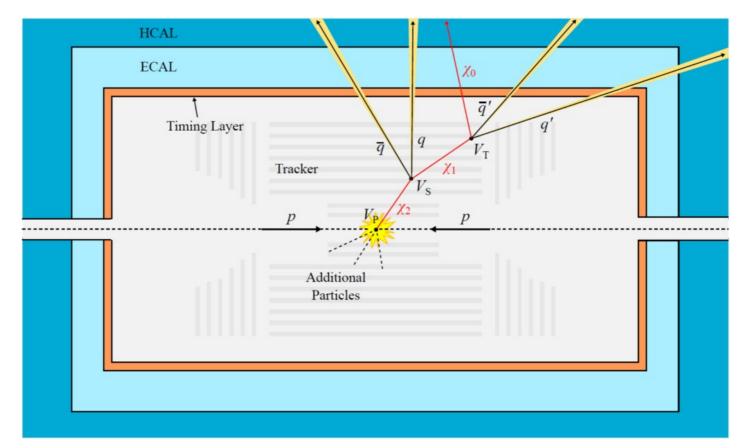


Tumblers

- Tumblers can arise in a number of scenarios for new physics, including...
 - Hidden-valley scenarios [Strassler, Zurek: hep-ph/0604261; Strassler: hep-ph/0607160; Juknevich: 0911.5616; Juknevich, Melnikov, Strassler: 0903.0883; Craig, Katz, Strassler, Sundrum: 1501.05310]
 - Compressed SUSY [Martin: hep-ph/0703097]
 - Scenarios involving emerging jet, semi-visible jets, dark jets, or soft bombs [Schwaller, Stolarski, Weiler: 1502.05409; Cohen, Lisani, Lou: 1503.00009; Park, Zhang: 1712.09279; Knapen, Pagan Griso, Papucci, Robinson: 1612.00850]
 - Models involving large numbers of additional degrees of freedom with disorder in their mass matrix [D'Agnolo, Low: 1902.05535]
 - Extended dark-sector scenarios with mediator-induced decay chains [Dienes, Kim, Song, Su, BT, Yaylali: 1910.01129]
- As we shall see, precision timing provides us with a tool that we can use in order to exploit the <u>distinctive kinematics</u> of tumbler events and distinguish tumblers from other kinds of events involving multiple DVs.

Tumblers: An Example

- For purposes of illustration, let's focus on the simplest example of a tumbler – an example which involves <u>two DVs</u>.
- An LLP χ_2 is produced at the primary vertex and decays into a lighter LLP χ_1 , which itself decays to a collider-stable, invisible particle χ_0 . Each decay is macroscopically displaced. Each decay <u>also produces SM</u> <u>particles</u> here a $\bar{q}q$ pair which manifests as a pair of hadronic jets.



A Concrete Model for Tumblers

- For concreteness, let's consider a model in which there exist three SM-singlet *Dirac fermions* χ_0 , χ_1 , and χ_2 .
- These χ_n couple to SM quarks q via a mediator ϕ which is a <u>Lorentz</u> <u>scalar</u> and a triplet under SU(3) color.
- To suppress flavor-changing effects, we take ϕ to be a triplet under the approximate $U(3)_u$ flavor symmetry of the right-handed up-type quarks and assume that ϕ and these quarks share a common mass eigenbasis.

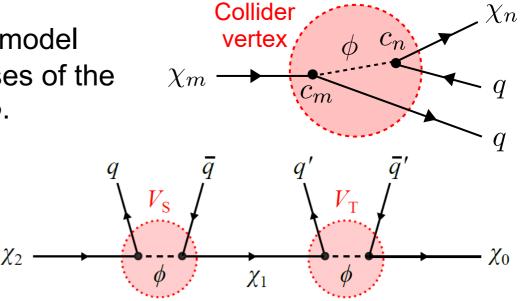
Mass eigenstates $\{\phi_{u}, \phi_{c}, \phi_{t}\}$ essentially each couple to a <u>single flavor</u>.

$$\mathcal{L}_{\text{int}} = \sum_{q \in \{u,c,t\}} \sum_{n=0}^{2} \left[c_{nq} \phi_q^{\dagger} \overline{\chi}_n P_R q + \text{h.c.} \right]$$

- For simplicity, we take $m_{\phi_u} \ll m_{\phi_c}, m_{\phi_t}$ so that only ϕ_u . For simplicity, we'll refer to ϕ_u as " ϕ " and m_{ϕ_u} as " m_{ϕ} ".
- In practice, this is tantamount to taking $c_{nc} = c_{nt} = 0$, while $c_n \equiv c_{nu} \neq 0$.

Decays and Displaced Vertices

- Both χ_1 and χ_2 are unstable in this model and decay via three-body processes of the form $\chi_m \to \chi_n q q$ involving a virtual ϕ .
- Tumblers arise when χ_2 is produced at the primary vertex and decays to χ_1 , which in turn decays to χ_0 .



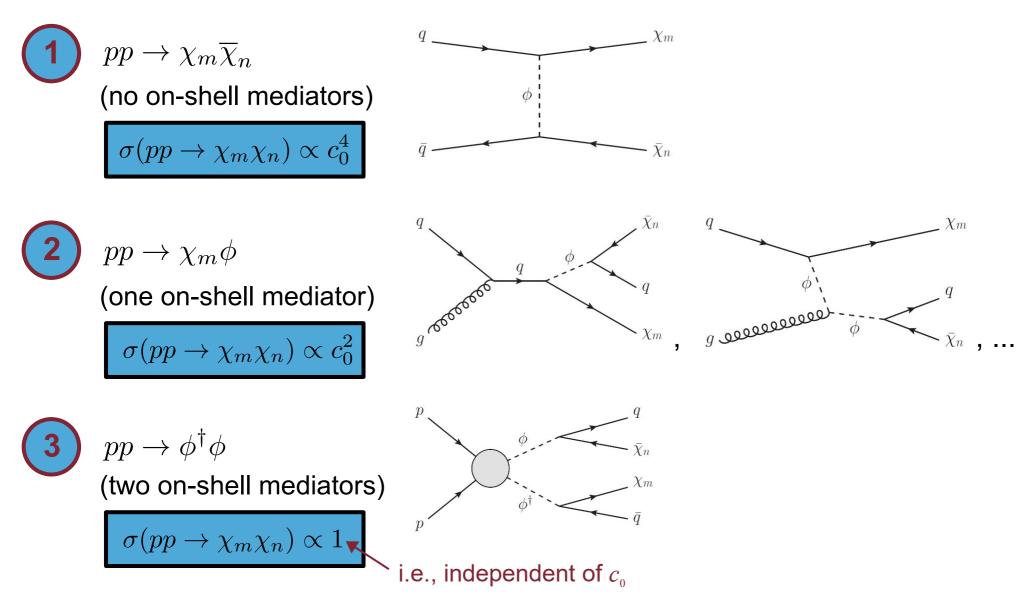
- Partial widths of χ_m scale like $\Gamma_{mn} \propto c_m^2 c_n^2$. For χ_1 and χ_2 to be sufficiently long-lived that they both yield DVs, we need small couplings $c_n \ll 1$.
- For concreteness, we take the three c_n to scale according to relation

Coupling for lighest state $c_n = c_0 \left(\frac{m_n}{m_0}\right)^{\gamma}$ Controls how c_n scales w/ n

• By contrast, partial widths for ϕ scale like $\Gamma_{\phi n} \propto c_n^2$, which in this regime implies $\Gamma_{\phi n} \gg \Gamma_{mn}$. As a result, in the regime where χ_1 and χ_2 typically decay inside the tracker of a collider detector, ϕ decay is typically prompt.

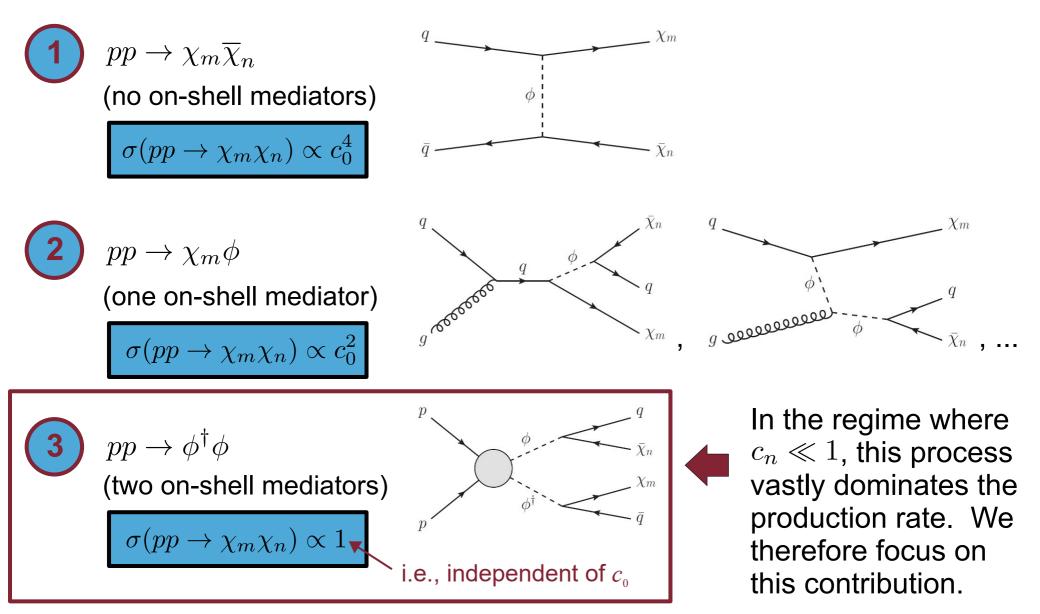
Production Channels

• Several different processes contribute to the overall production rate ftumblers in this scenario. There are **three main classes**:



Production Channels

• Several different processes contribute to the overall production rate ftumblers in this scenario. There are **three main classes**:



Parameter-Space Regions of Interest

- Not all decay chains give rise to tumblers, however. The probability that a given decay chain yields a tumbler depends on the set of branching fractions $BR_{\phi n} \equiv BR(\phi^{\dagger} \rightarrow \chi_n \overline{q})$ and $BR_{mn} \equiv BR(\chi_m \rightarrow \chi_n q \overline{q})$.
- Since $pp \rightarrow \phi^{\dagger}\phi$ production dominates, most tumbler decay chains begin with the (prompt) decay of ϕ or ϕ^{\dagger} . The probability that such a chain will yield a tumbler is

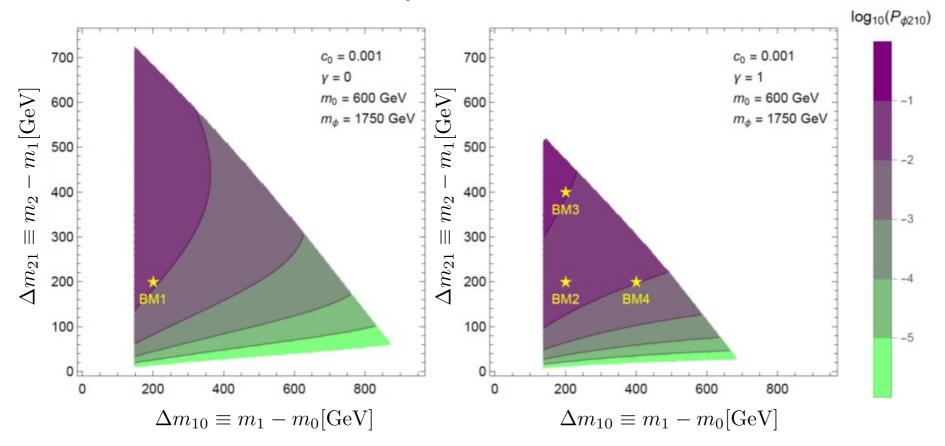
$$P_{\phi 210} = BR_{\phi 2}BR_{21}BR_{10}$$
$$= BR_{\phi 2}BR_{21}$$

LET'S GO

- Generally speaking, the regions of our parameter space which are of interest for tumbler phenomenology are those within which $P_{_{\phi210}}$ is large.
- Our parameter space is six-dimensional:

Free parameters: $\{m_{\phi}, m_0, m_1, m_2, c_0, \gamma\}$

Results for $P_{\phi^{210}}$ and **Benchmarks**



 Based on these results, we define four parameter-space benchmarks (indicated by the yellow stars above).

Benchmark	Input Parameters						Mass Splittings		Proper Decay Lengths	
	c_0	γ	$\frac{m_0}{(\text{GeV})}$	m_1 (GeV)	$\frac{m_2}{(\text{Gev})}$	$\frac{m_{\phi}}{(\text{GeV})}$	Δm_{10} (GeV)	Δm_{21} (GeV)	$c au_1$ (m)	$\begin{array}{c} c au_2 \ (\mathrm{m}) \end{array}$
BM1	0.001	0	600	800	1000	1750	200	200	2.42	8.33×10^{-2}
BM2	0.001	1	600	800	1000	1750	200	200	1.36	2.89×10^{-2}
BM3	0.001	1	600	800	1200	1750	200	400	1.36	2.14×10^{-3}
BM4	0.001	1	600	1000	1200	1750	400	200	3.15×10^{-2}	2.89×10^{-3}

Constraints from LHC Searches

- Current LHC results constrain new-physics contributions to the event rates in several detection channels for our model. These include...
- <u>Multijet + </u>[Sirunyan et al.: 1908.04722, 1909.03560; Aad et al.: 201014293]
 - Since ϕ and χ_n have the same quantum numbers as \tilde{q} and \tilde{N} in SUSY, bounds are similar to those on squark/neutralino models.
 - Constraints satisfied when $m_{\phi} \gtrsim 1250 \text{ GeV}$ and $m_{\chi_n} \gtrsim 500 \text{ GeV}$.
- *Monojet* + *E*/*_T*: [Aad et al.: 2012.10874]
 - Constraints within our parameter-space region of interest are subleading in comparison with multijet constraints.
- *Displaced-Jet Channels*: [Sirunyan et al.: 1906.06441, 2012.01581, 2104.13474]
 - Constrains the product of production cross-section σ_{χ} and the square of the LLP branching fraction Br_{χ} into relevant final states.

• Bound is
$$\sigma_{\chi\chi} BR_j^2 \lesssim 0.05 - 0.5$$
 fb for 10^{-4} m $< c\tau_{\chi} < 10$ m.

We must ensure that our model is consistent with these bounds within our region of interest, while at the same time yields a significant number of tumbler events at the HL-LHC or proposed future colliders.

Effective Cross-Sections

- We define a set of <u>effective cross</u> <u>sections</u> $\sigma_{\text{eff}}^{(\alpha)}$ which incorporate contributions to the event rate for a particular class of processes that arise in our model.
 - <u>Tumbler Class</u>: $\sigma_{\text{eff}}^{(T)}$

Processes involving at least one tumbler

• **DV Class:** $\sigma_{\rm eff}^{\rm (DV)}$

Processes which yield at least one DV, whether or not it is part of a tumbler

• <u>Multi-Jet Class</u>: $\sigma_{\text{eff}}^{(Nj)}$

Processes which yield two or more hard jets, but no DV

• Monojet Class: $\sigma_{\text{eff}}^{(1j)}$

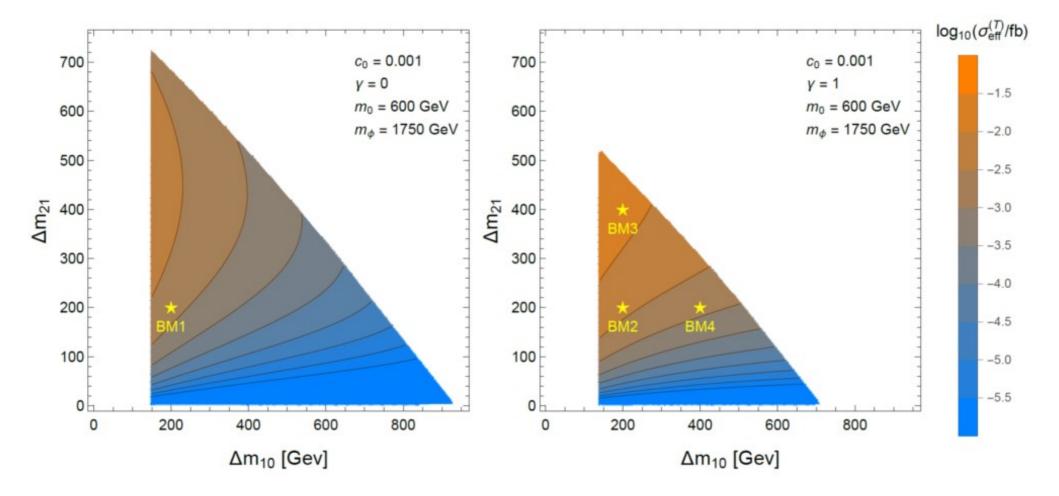
Processes which involve one hard jet and no DV

Possible Event Topolgies

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	First Chain	Second Chain	Tumblers	Displaced Vertices	Prompt Jets							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\phi \to \chi_2 \to \chi_1 \to \chi_0$				2j							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi \to \chi_2 \to \chi_1 \to \chi_0$	$\phi o \chi_2 o \chi_0$		DV	2j							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Т	DV	2j							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi \to \chi_2 \to \chi_1 \to \chi_0$	$\phi o \chi_0$	Т		2j							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi \to \chi_2 \to \chi_0$	$\phi ightarrow \chi_2 ightarrow \chi_0$		$2\mathrm{DV}$	2j							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\phi \to \chi_2 \to \chi_0$	$\phi \to \chi_1 \to \chi_0$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\phi \to \chi_2 \to \chi_0$	$\phi ightarrow \chi_0$		DV								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi \to \chi_1 \to \chi_0$	$\phi \to \chi_2 \to \chi_0$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\phi \to \chi_1 \to \chi_0$	$\phi \to \chi_1 \to \chi_0$		DV								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\phi \to \chi_0$				2j							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		/ • • • • • • • • • •										
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $		$\chi_2 o \chi_0$			j							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $		$\chi_1 o \chi_0$		DV	j							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					j							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $			Т		Ĵ							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					Ĵ.							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					Ĵ							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $			T		Ĵ.							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $			T		Ĵ.							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					\mathcal{I}							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					Ji							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $					Ĵ.							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $			1	DV	J i							
$ \begin{array}{ c c c c c c c c } \hline \phi \rightarrow \chi_0 & \chi_0 & \chi_0 & j \\ \hline & & From \ pp \rightarrow \chi_m \chi_n \ Production \\ \hline \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & 2T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_2 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & T & DV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & T & UV \\ \chi_2 \rightarrow \chi_1 \rightarrow \chi_0 & \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & 2DV & 2DV \\ \chi_2 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_1 \rightarrow \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \chi_1 \rightarrow \chi_0 & \chi_0 & DV & DV \\ \hline \end{array} $				2.	Ĵ							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					J i							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\phi \rightarrow \chi_0$		roduction		J							
$ \begin{vmatrix} \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{2} \rightarrow \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{0} & \chi_{0} & \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & \chi_{0} & DV \\ \chi_{2} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & DV \\ \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & DV \\ \chi_{1} \rightarrow \chi_{0} & \chi_{0} & DV & DV \\ \end{pmatrix} $	$\gamma_0 \rightarrow \gamma_1 \rightarrow \gamma_0$											
$ \begin{vmatrix} \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & T & DV \\ \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{0} & \chi_{1} \rightarrow \chi_{0} & T \\ \chi_{2} \rightarrow \chi_{1} \rightarrow \chi_{0} & \chi_{2} \rightarrow \chi_{0} & \chi_{2} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & 2DV \\ \chi_{2} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & DV & 2DV \\ \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & DV & 2DV \\ \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & DV & DV \end{vmatrix} $				DV								
$ \begin{vmatrix} \chi_{2} & \rightarrow \chi_{1} & \rightarrow \chi_{0} & \chi_{0} & \chi_{0} & T \\ \chi_{2} & \rightarrow \chi_{0} & \chi_{2} & \rightarrow \chi_{0} & \chi_{2} & \rightarrow \chi_{0} \\ \chi_{2} & \rightarrow \chi_{0} & \chi_{1} & \rightarrow \chi_{0} & 2DV \\ \chi_{2} & \rightarrow \chi_{0} & \chi_{1} & \rightarrow \chi_{0} & DV \\ \chi_{1} & \rightarrow \chi_{0} & \chi_{1} & \rightarrow \chi_{0} & 2DV \\ \chi_{1} & \rightarrow \chi_{0} & \chi_{1} & \rightarrow \chi_{0} & DV \end{vmatrix} $												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				2DV								
$ \begin{vmatrix} \chi_{2} \rightarrow \chi_{0} & \chi_{0} & \chi_{0} \\ \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} & \chi_{1} \rightarrow \chi_{0} \\ \chi_{1} \rightarrow \chi_{0} & \chi_{0} & DV \end{vmatrix} $												
$ \begin{vmatrix} \chi_1 &\to \chi_0 \\ \chi_1 &\to \chi_0 \\ \chi_1 &\to \chi_0 \end{vmatrix} \qquad \begin{pmatrix} \chi_1 &\to \chi_0 \\ \chi_0 \\ \chi_0 \end{vmatrix} \qquad 2DV \\ DV $												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
χ_0 χ_0												

Effective Tumbler Cross-Sections

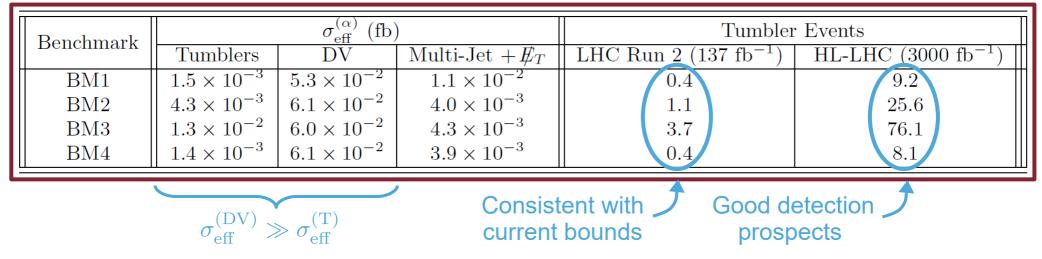
• Within our parameter-space region of interest, $\sigma_{\rm eff}^{(T)}$ is indeed large enough to provide a significant number of events at the HL-LHC.



Results

•We evaluate $\sigma_{\rm eff}^{(\rm DV)}$, $\sigma_{\rm eff}^{(Nj)}$, and $\sigma_{\rm eff}^{(1j)}$ as well as $\sigma_{\rm eff}^{(\rm T)}$ for all of our benchmarks. However, we find that $\sigma_{\rm eff}^{(1j)}$ is always subleading.

Effective Cross-Sections and Expected Tumbler Event Counts

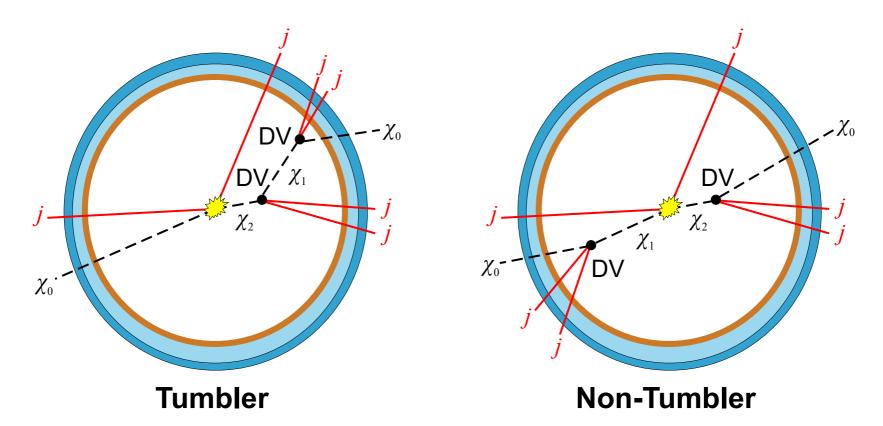


- All four of our benchmarks are consistent with current LHC limits from monojet, multi-jet, and DV searches.
- Moreover, all of these benchmarks are expected to yield a significant number of tumbler events at the HL-LHC.

<u>The upshot</u>: Despite stringent limits, there is still potential for mediatorinduced decay chains to manifest themselves at colliders.

The Next Step: Distinguishing Tumblers

- There is, however, another issue we must address. Up to this point, our analysis does not distinguish between tumbler events and other, non-tumbler events which likewise include multiple DVs.
- Moreover, we have seen that a "background" of such non-tumbler events arises even within the context of our model!
- Thus, in order to claim a discovery of tumblers, we must develop a *method for distinguishing them* from non-tumbler events.



Event-Selection Through Mass-Reconstruction

- Fortunately, the *distinctive kinematics* of tumblers can serve as a basis for distinguishing between tumbler and non-tumbler events.
- *Timing and momentum information* can be used to reconstruct the positions and times of the primary and displaced vertices.
- From this information, the velocities $\vec{\beta}_1$ and $\vec{\beta}_2$ of χ_1 and χ_2 can be reconstructed, and from these, in turn, the **masses** m_0 , m_1 , and m_2 .

$$\vec{\boldsymbol{\beta}}_1 = (\vec{\mathbf{x}}_{\mathrm{T}} - \vec{\mathbf{x}}_{\mathrm{S}})/(t_{\mathrm{T}} - t_{\mathrm{S}})$$

 χ_0

Timing

Layer

 (t_P, \mathbf{x}_P)

Tumbler

 χ_0

 χ_2

 $(t_T, ec{\mathbf{x}}_T)$

 $(t_S, \vec{\mathbf{x}}_S)$

$$\vec{\boldsymbol{\beta}}_2 = (\vec{\mathbf{x}}_{\mathrm{S}} - \vec{\mathbf{x}}_{\mathrm{P}})/(t_{\mathrm{S}} - t_{\mathrm{P}})$$

$$m_{2} = \frac{\left|\vec{\mathbf{p}}_{q} + \vec{\mathbf{p}}_{\bar{q}} - \vec{\beta}_{1}\left(|\vec{\mathbf{p}}_{q}| + |\vec{\mathbf{p}}_{\bar{q}}|\right)\right|}{\gamma_{2}|\vec{\beta}_{1} - \vec{\beta}_{2}|}$$

$$m_{1} = \frac{\left|\vec{\mathbf{p}}_{q} + \vec{\mathbf{p}}_{\bar{q}} - \vec{\beta}_{2}\left(|\vec{\mathbf{p}}_{q}| + |\vec{\mathbf{p}}_{\bar{q}}|\right)\right|}{\gamma_{1}|\vec{\beta}_{1} - \vec{\beta}_{2}|}$$

$$m_{0}^{2} = m_{1}^{2} - 2\gamma_{1}m_{1}\left[|\vec{\mathbf{p}}_{q'}| + |\vec{\mathbf{p}}_{\bar{q}'}| - \vec{\beta}_{1} \cdot (\vec{\mathbf{p}}_{q'} + \vec{\mathbf{p}}_{\bar{q}'})\right]$$

$$+2\left(|\vec{\mathbf{p}}_{q'}||\vec{\mathbf{p}}_{\bar{q}'}| - \vec{\mathbf{p}}_{q'} \cdot \vec{\mathbf{p}}_{\bar{q}'}\right)$$

Event-Selection Through Mass-Reconstruction

- For tumblers, this procedure nevertheless typically yields a sensible set of reconstructed masses and velocities *i.e.*, a set for which:
 - m_1 and m_2 are real and positive
 - m_0^2 is real
 - $|\vec{\mathbf{p}}_0|$ is real and positive
 - $0 < |\vec{\beta}_n| < 1$ for n = 1, 2
 - $m_2^2 > m_1^2 > m_0^2$
- By contrast, non-tumbler events, which have a different kinematic structure, typically fail to satisfy one or more of these criteria.
- Moreover, the kinematic distributions of m_0 , m_1 , and m_2 for tumbler events should all exhibit <u>peaks</u> at the correspondin true mass values. By contrast, non-tumbler events should exhibit no such peaks.

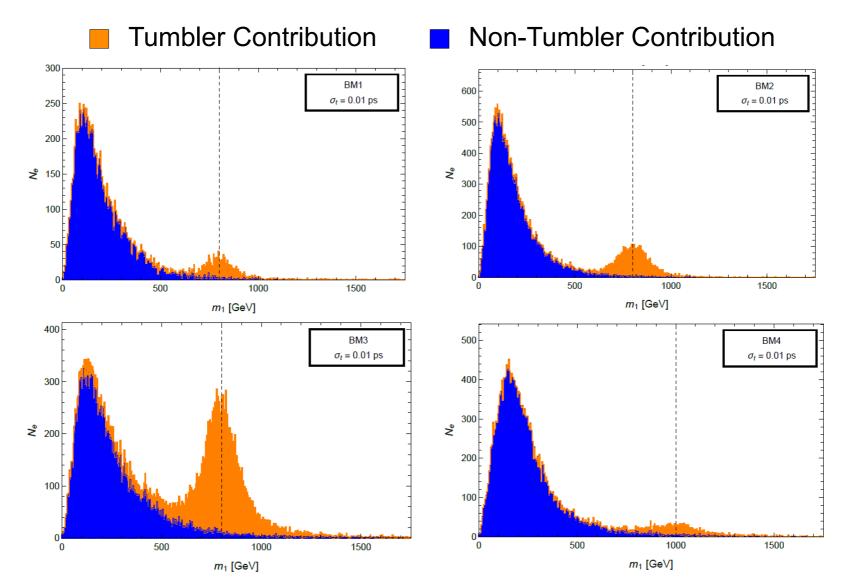
The plan: apply these event-selection criteria in order to amplify the ratio of tumbler to non-tumbler events in the data, then identify the peaks in order to detect/distinguish tumblers.

Monte-Carlo Simulation

- In order to examine how this work in practice, we perform a Monte-Carlo analysis of $pp \rightarrow \phi^{\dagger} \phi$ production and subsequent mediator decay.
- We work at parton level, but take into account the relevant uncertainties as follows:
 - **<u>Timing uncertainty</u>**: smear the time at which each jet hits the timing layer by a Gaussian with uncertainty σ_t .
 - Jet-energy uncertainty: smear the energy E_j of each jet by a Gaussian with an energy-dependent uncertainty $\sigma_E(E_j)$ modeled after the CMS-detector response.
- The *direct* effect of the jet-direction uncertainties σ_{η} and σ_{ϕ} on the reconstructed m_n through the $\vec{\mathbf{p}}_j$ are subleading compared to that of σ_E .
- However, their *indirect* effect through $\vec{\beta}_1$ and $\vec{\beta}_2$, which depend on \vec{x}_P , \vec{x}_S , and \vec{x}_T can be more significant and need to be accounted for.
 - Vertex-location uncertainty: shift the position of each vertex by a random vector whose magnitude is distributed according to a Gaussian with uncertainty $\sigma_r = 30 \ \mu m$.

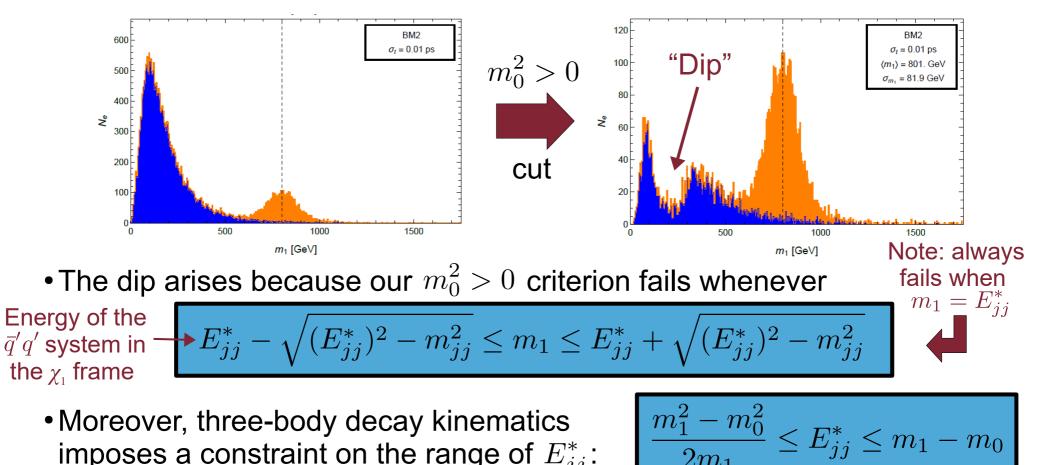
The Reconstructed *m_n* Distributions

• Indeed, for sufficiently low σ_t , the distributions of reconstructed m_1 values exhibit a discernable <u>tumbler peak</u> around the true m_1 value, along with a residual background of non-tumbler events at low m_1 .



One Additional Cut

• Finally, we'll impose one additional requirement: $m_0^2 > 0$. This cut reduces the background even further (by a factor of ~10 for all BMs) and also alters the <u>shapes</u> of the m_1 distributions.



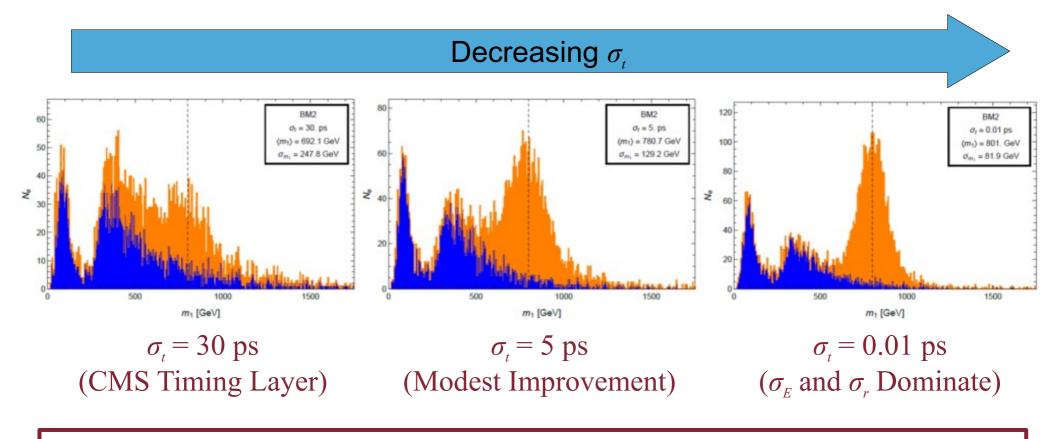
Location of the dip

imposes a constraint on the range of E_{jj}^* : $2m_1$ • For example, for BM1, E_{jj}^* lies within the narrow range

 $175 \text{ GeV} \le E_{jj}^* \le 200 \text{ GeV}$

The Impact of Timing Resolution

• We can also examine how improvements in timing resolution would impact our ability to resolve the tumbler peak in the m_1 distribution.

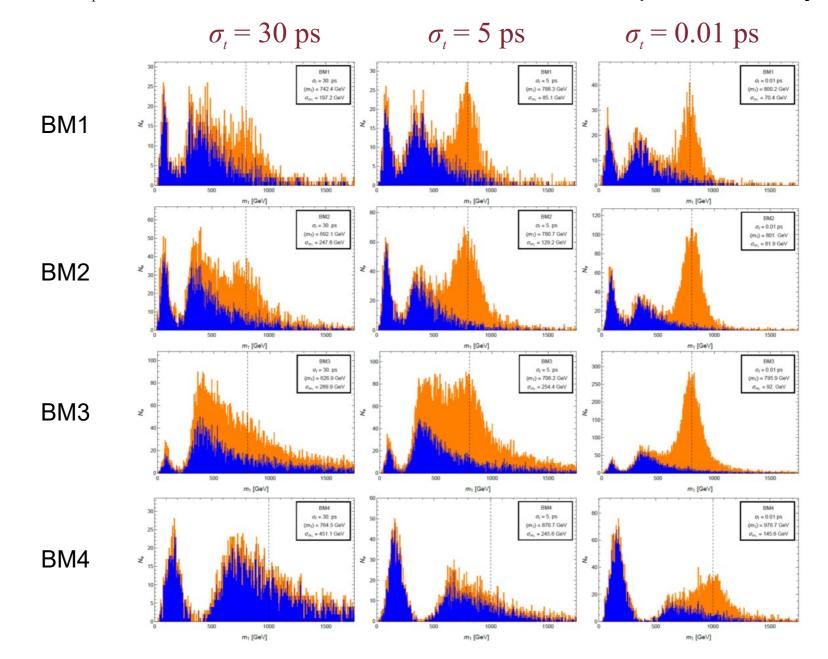


The Upshot:

Even a moderate improvement in σ_i would significantly enhance the prospects for distinguishing tumblers at the LHC or at future colliders.

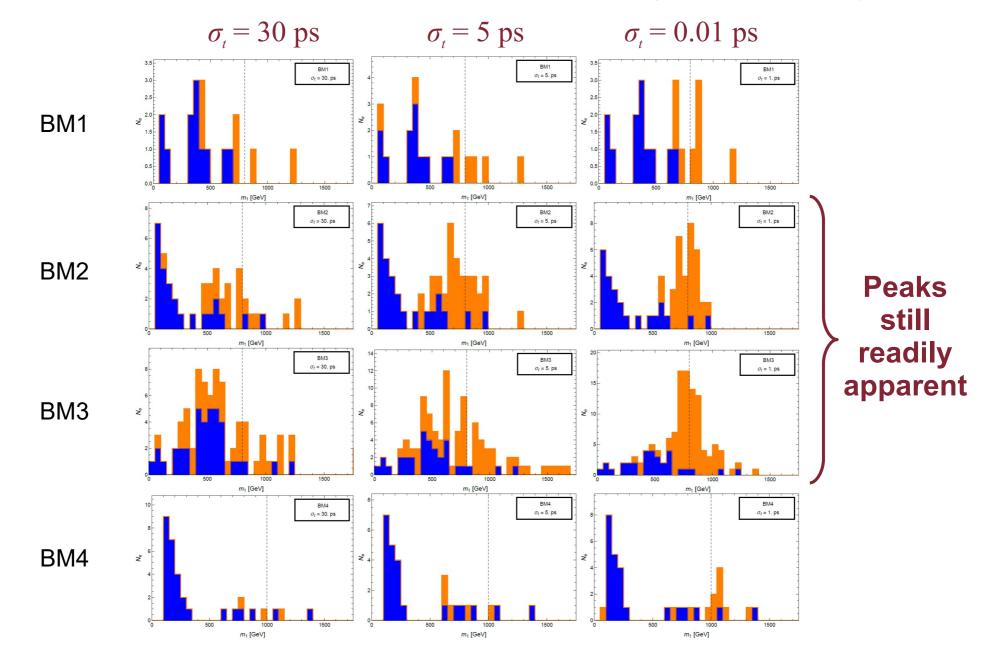
Other Benchmarks

• The m_1 distributions for our other benchmarks depend similarly on σ_{t} .



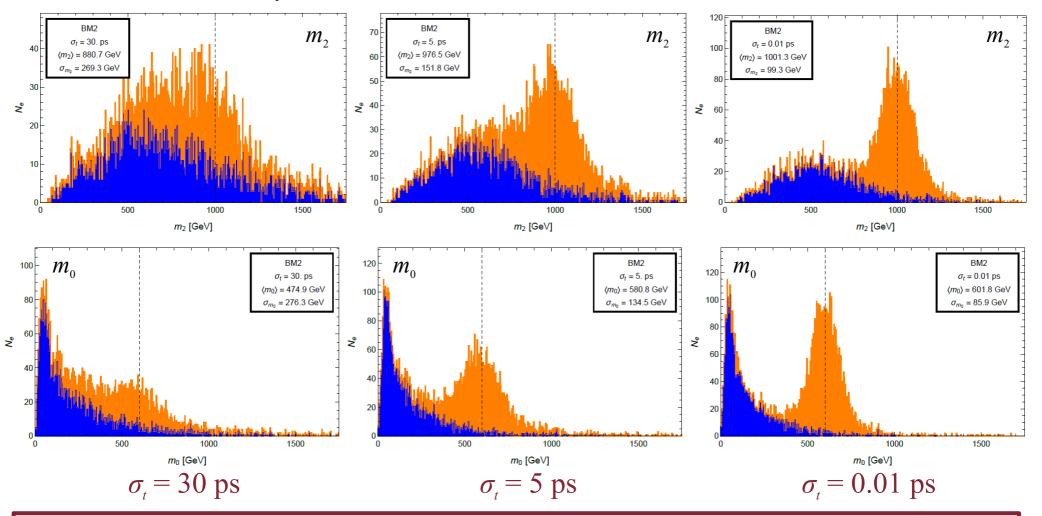
Realistic Event Counts

• At a collider similar to HL-LHC, with twice the integrated luminosity.



Other Masses

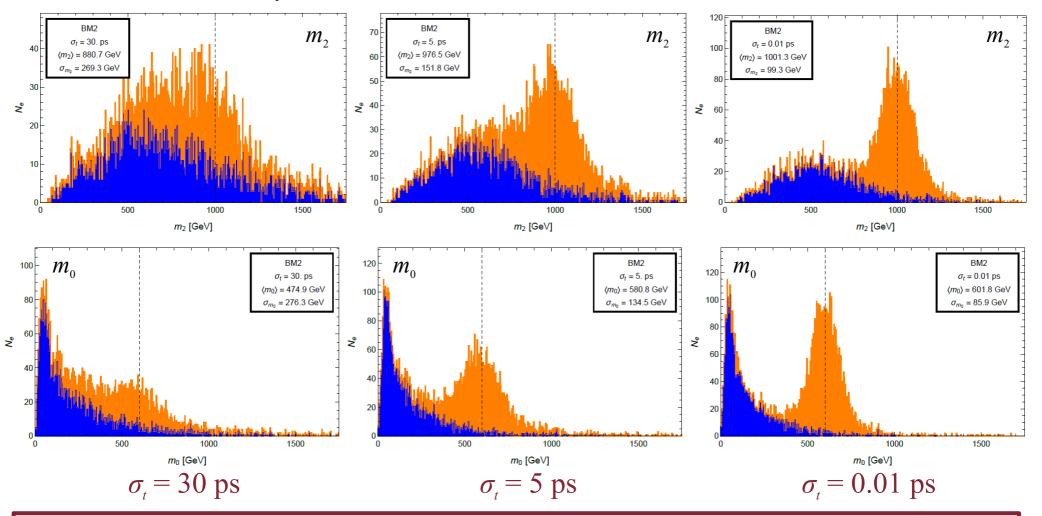
- The m_2 and m_0 distributions exhibit a similarly dependence on σ_t .
- However these distibutions do not exhibit a "dip" akin to the one which appears in the m_1 distribution.



Once again, even a moderate improvement in σ_t would have a huge impact.

Other Masses

- The m_2 and m_0 distributions exhibit a similarly dependence on σ_t .
- However these distibutions do not exhibit a "dip" akin to the one which appears in the m_1 distribution.



Once again, even a moderate improvement in σ_t would have a huge impact.

Lifetime Reconstruction

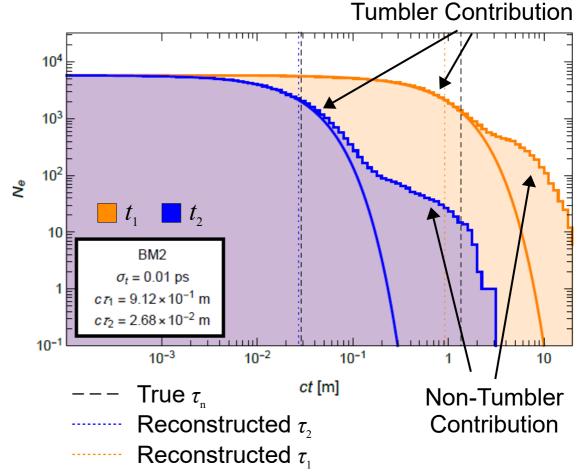
- Timing and vertex-position information likewise allows us to determine the lifetimes of the decaying LLPs.
- Proper decay times t_1 and t_2 can also be reconstruct for χ_1 and χ_2 in each event, given timing information.
- For n = 1, 2, we define the total number of events $N_{r}(t)$ which have a proper decay time t_{r} longer than t.
- Fitting the $N_{r}(t)$ distributions (after cuts) to exponential functions of the form

$$N_n(t) = N_n(0)e^{-t/\tau_n}$$

yields a reasonably accurate estimate for the τ_{r} .

Proper Decay Times

$$t_1 = (t_{\rm T} - t_{\rm S})(1 - |\vec{\beta}_1|^2)^{1/2}$$
$$t_2 = (t_{\rm S} - t_{\rm P})(1 - |\vec{\beta}_2|^2)^{1/2}$$



Summary

- Tumblers are a novel collider signature in which <u>multiple DVs</u> arise in the same event as a consequence of <u>sequential decays</u> along the same decay chain.
- Such signatures arise naturally in new-physics scenarios in which LLPs themselves decay into final states involving other LLPs.
- These mediators can give rise to <u>extended decay chains</u> at coliders involving large numbers of SM particles.
- Event-selection criteria based on the reconstruction of the LLP masses can efficiently discriminate between tumblers and other kinds of events involving multiple DVs.
- A <u>moderate enhancement in timing resolution</u> relative to the ~30 ps that will be provided by the CMS barrel timing layer could pay huge dividends in terms of our ability to distinguish between different event topologies involving multiple displaced vertices.