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Long-Lived Particles
● Long-lived particles (LLPs) arise in many extensions of the SM.

● LLPs with lifetimes                                              can give rise to 
macroscopically displaced vertices (DVs) at colliders.                        

● Search channels involving DVs have very 
low SM backgrounds and thus represent 
a promising experimental probe of new 
physics.             

● Several dedicated searches for excesses in 
channels involving one or more DVs have 
already been performed at the LHC.       

● During the HL-LHC upgrade, additional 
apparatus will be installed in both the 
ATLAS and CMS detectors which enhances 
their physics performance with regard to 
DVs.       

CMS: Barrel Timing Layer, High-
Granularity Calorimeters

ATLAS: Encap Timing Detectors, 
High-Granularity Calorimeters

             [Liu, Liu, Wang: 1805.05957; Liu, Liu, Wang, 
Wang: 2005.10836; Flowers, Meier, Rogan, Kang, 
Park: 1903.05825]



  

Tumblers
● The analysis of LLP signatures has generally focused on the case in 
which each LLP decays to final states involving one or more detectable 
SM particles – plus perhaps additional invisible particles.

● However, in scenarios in which there exist multiple LLP species, 
another possibility arises: LLPs which decay to finals states involving 
both SM particles and other, lighter LLPs.                 

● Multiple, sequential decays of different LLP species along the same 
decay chain can give rise to multiple DVs.

● We call a sequence of DVs which result from successive decays of LLPs 
within the same decay chain a “tumbler.”
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Tumblers
● Tumblers can arise in a number of scenarios for new physics, including...

Extended dark-sector scenarios with mediator-induced decay 
chains [Dienes, Kim, Song, Su, BT, Yaylali: 1910.01129]

Hidden-valley scenarios                                                 [Strassler, Zurek: hep-ph/0604261; Strassler: 
hep-ph/0607160; Juknevich: 0911.5616; Juknevich, Melnikov, Strassler: 
0903.0883; Craig, Katz, Strassler, Sundrum: 1501.05310]

Scenarios involving emerging jet, semi-visible jets, dark jets, or 
soft bombs                        [Schwaller, Stolarski, Weiler: 1502.05409; Cohen, Lisani, Lou: 
1503.00009; Park, Zhang: 1712.09279; Knapen, Pagan Griso, Papucci, 
Robinson: 1612.00850]

Compressed SUSY

Models involving large numbers of additional degrees of freedom 
with disorder in their mass matrix [D’Agnolo, Low: 1902.05535]

[Martin: hep-ph/0703097]

● As we shall see, precision timing provides us with a tool that we can use 
in order to exploit the distinctive kinematics of tumbler events and 
distinguish tumblers from other kinds of events involving multiple DVs.



  

Tumblers: An Example
● For purposes of illustration, let’s focus on the simplest example of a 
tumbler – an example which involves two DVs.

● An LLP χ2 is produced at the primary vertex and decays into a lighter 
LLP χ1, which itself decays to a collider-stable, invisible particle χ0.  Each 
decay is macroscopically displaced.  Each decay also produces SM 
particles – here a qq pair which manifests as a pair of hadronic jets.



  

A Concrete Model for Tumblers

● For concreteness, let’s consider a model in which there exist three SM-
singlet Dirac fermions χ0, χ1, and χ2.

● To suppress flavor-changing effects, we take ϕ to be a triplet under the 
approximate U(3)u flavor symmetry of the right-handed up-type quarks 
and assume that ϕ and these quarks share a common mass eigenbasis.

● For simplicity, we take                            so that only ϕu.  For simplicity, 
we’ll refer to ϕu as “ϕ” and mϕu

 as “mϕ”.

Mass eigenstates {ϕu, ϕc, ϕt} essentially each couple to a single flavor.

coupling constants

● In practice, this is tantamount to taking cnc = cnt = 0, while cn ≡ cnu ≠ 0.

● These χn couple to SM quarks q via a mediator ϕ which is a Lorentz 
scalar and a triplet under SU(3) color.



  

Decays and Displaced Vertices

● For concreteness, we take the three cn to scale according to relation

Coupling for 
lighest state

Controls how cn 
scales w/ n

● Both χ1 and χ2 are unstable in this model 
and decay via three-body processes of the 
form χm → χnqq involving a virtual ϕ.

● Partial widths of χm scale like                     .  For χ1 and χ2 to be sufficiently 
long-lived that they both yield DVs, we need small couplings             .

● Tumblers arise when χ2 is 
produced at the primary vertex 
and decays to χ1, which in turn 
decays to χ0.

Collider 
vertex

● By contrast, partial widths for ϕ scale like                , which in this regime 
implies                    .  As a result, in the regime where χ1 and χ2 typically 
decay inside the tracker of a collider detector, ϕ decay is typically prompt.



  

Production Channels
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● Several different processes contribute to the overall production rate 
ftumblers in this scenario.  There are three main classes:

i.e., independent of c0
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● Several different processes contribute to the overall production rate 
ftumblers in this scenario.  There are three main classes:

i.e., independent of c0

In the regime where   
           , this process 
vastly dominates the 
production rate.  We 
therefore focus on 
this contribution.



  

Parameter-Space Regions of Interest

● Not all decay chains give rise to tumblers, however.  The probability that 
a given decay chain yields a tumbler depends on the set of branching 
fractions BRϕn ≡ BR(ϕ† → χnq) and BRmn ≡ BR(χm → χnqq).

● Generally speaking, the regions of our parameter space which are of 
interest for tumbler phenomenology are those within which Pϕ210 is large.

Free parameters:

● Since pp → ϕ†ϕ production dominates, most tumbler decay chains begin 
with the (prompt) decay of ϕ or ϕ†.  The probability that such a chain will 
yield a tumbler is

● Our parameter space is six-dimensional:



  

Results for Pϕ210 and Benchmarks

● Based on these results, we define four parameter-space benchmarks 
(indicated by the yellow stars above).



  

Constraints from LHC Searches
● Current LHC results constrain new-physics contributions to the event 
rates in several detection channels for our model.  These include...

● Monojet + ET:

● Multijet + ET:

● Displaced-Jet Channels:

We must ensure that our model is consistent with these bounds within 
our region of interest, while at the same time yields a significant number 

of tumbler events at the HL-LHC or proposed future colliders. 

[Sirunyan et al.: 1906.06441, 2012.01581, 2104.13474] 

[Sirunyan et al.: 1908.04722, 1909.03560; Aad et al.: 201014293] 

[Aad et al.: 2012.10874] 

Constrains the product of production cross-section σχχ and the 
square of the LLP branching fraction Brχj into relevant final states.

Bound is                                            for                                    .

Constraints within our parameter-space region of interest are 
subleading in comparison with multijet constraints. 

Since ϕ and χn have the same quantum numbers as q and N in 
SUSY, bounds are similar to those on squark/neutralino models.

Constraints satisfied when                            and                           .

~ ~



  

Effective Cross-Sections
● We define a set of effective cross 
sections          which incorporate 
contributions to the event rate for a 
particular class of processes that 
arise in our model.

Tumbler Class:

DV Class:

Multi-Jet Class:

Monojet Class:

Processes involving at least one 
tumbler

Processes which yield at least 
one DV, whether or not it is part 
of a tumbler

Processes which yield two or 
more hard jets, but no DV

Processes which involve one  
hard jet and no DV

Possible Event Topolgies



  

Effective Tumbler Cross-Sections
● Within our parameter-space region of interest,        is indeed large 
enough to provide a significant number of events at the HL-LHC.



  

Results
● We evaluate          ,          , and          as well as         for all of our f 
benchmarks.  However, we find that          is always subleading.  

● All four of our benchmarks are consistent with current LHC limits from  
monojet, multi-jet, and DV searches.

Effective Cross-Sections and Expected Tumbler Event Counts

The upshot: Despite stringent limits, there is still potential for mediator-
induced decay chains to manifest themselves at colliders.

Consistent with 
current bounds

Good detection 
prospects 

● Moreover, all of these benchmarks are expected to yield a significant 
number of tumbler events at the HL-LHC.



  

The Next Step: Distinguishing Tumblers
● There is, however, another issue we must address.  Up to this point, 
our analysis does not distinguish between tumbler events and other, 
non-tumbler events which likewise include multiple DVs.
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● Moreover, we have seen that a “background” of such non-tumbler 
events arises even within the context of our model!

● Thus, in order to claim a discovery of tumblers, we must develop a 
method for distinguishing them from non-tumbler events.
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Event-Selection Through Mass-Reconstruction
● Fortunately, the distinctive kinematics of tumblers can serve as a 
basis for distinguishing between tumbler and non-tumbler events.

● Timing and momentum information can be used to reconstruct the 
positions and times of the primary and displaced vertices.
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j

Timing 
Layer

Reconstructed masses

● From this information, the velocities      and      of χ1 and χ2 can be 
reconstructed, and from these, in turn, the masses m0, m1, and m2.

Tumbler



  

Event-Selection Through Mass-Reconstruction
● For tumblers, this procedure nevertheless typically yields a sensible 
set of reconstructed masses and velocities – i.e., a set for which:

      and       are real and positive

                 for n = 1, 2

       is real

       is real and positive

● By contrast, non-tumbler events, which have a different kinematic 
structure, typically fail to satisfy one or more of these criteria.

● Moreover, the kinematic distributions of m0, m1, and m2 for tumbler 
events should all exhibit peaks at the correspondin true mass values.  
By contrast, non-tumbler events should exhibit no such peaks.

The plan: apply these event-selection criteria in order to amplify the 
ratio of tumbler to non-tumbler events in the data, then identify the 

peaks in order to detect/distinguish tumblers.   



  

Monte-Carlo Simulation
● In order to examine how this work in practice, we perform a Monte-
Carlo analysis of pp → ϕ†ϕ production and subsequent mediator decay.

Timing uncertainty: smear the time at which each jet hits the 
timing layer by a Gaussian with uncertainty σt. 

Jet-energy uncertainty: smear the energy Ej of each jet by a 
Gaussian with an energy-dependent uncertainty σE(Ej) modeled 
after the CMS-detector response. 

Vertex-location uncertainty: shift the position of each vertex by 
a random vector whose magnitude is distributed according to a 
Gaussian with uncertainty σr = 30 μm.

● The direct effect of the jet-direction uncertainties ση and σϕ on the 
reconstructed mn through the      are subleading compared to that of σE. 

● We work at parton level, but take into account the relevant 
uncertainties as follows: 

● However, their indirect effect through      and     , which depend on     ,  
    , and      can be more significant and need to be accounted for.



  

The Reconstructed mn Distributions
● Indeed, for sufficiently low σt, the distributions of reconstructed m1 
values exhibit a discernable tumbler peak around the true m1 value, 
along with a residual background of non-tumbler events at low m1.

Tumbler Contribution Non-Tumbler Contribution



  

One Additional Cut
● Finally, we’ll impose one additional requirement:              .  This cut 
reduces the background even further (by a factor of ~10 for all BMs) 
and also alters the shapes of the m1 distributions.

cut

“Dip”

● The dip arises because our              criterion fails whenever
 Energy of the 
       system in 
the χ1 frame

● Moreover, three-body decay kinematics 
imposes a constraint on the range of       :

Note: always 
fails when 

● For example, for BM1,       lies within the narrow range

Location of the dip



  

The Impact of Timing Resolution
● We can also examine how improvements in timing resolution would 
impact our ability to resolve the tumbler peak in the m1 distribution.

Decreasing σt

σt  = 30 ps
(CMS Timing Layer)

σt  = 5 ps
(Modest Improvement)

σt  = 0.01 ps
(σE and σr Dominate)

Even a moderate improvement in σt would significantly enhance the 
prospects for distinguishing tumblers at the LHC or at future colliders.

The Upshot:



  

Other Benchmarks
● The m1 distributions for our other benchmarks depend similarly on σt.

BM1

BM2

BM3

BM4

σt  = 30 ps σt  = 5 ps σt  = 0.01 ps



  

Realistic Event Counts
● At a collider similar to HL-LHC, with twice the integrated luminosity.

BM1

BM2

BM3

BM4

σt  = 30 ps σt  = 5 ps σt  = 0.01 ps

Peaks 
still 

readily 
apparent



  

Other Masses
● The m2 and m0 distributions exhibit a similarly dependence on σt.

σt  = 30 ps σt  = 5 ps σt  = 0.01 ps

● However these distibutions do not exhibit a “dip” akin to the one which 
appears in the m1 distribution.

m2 m2 m2

m0m0m0

Once again, even a moderate improvement in σt would have a huge impact.
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Lifetime Reconstruction
● Timing and vertex-position information likewise allows us to determine  
the lifetimes of the decaying LLPs.

t1 t2

● Proper decay times t1 and t2 can also be 
reconstruct for χ1 and χ2 in each event, 
given timing information.

Proper Decay Times

● For n = 1,2, we define the total 
number of events Nn(t) which 
have a proper decay time tn 
longer than t.

● Fitting the Nn(t) distributions 
(after cuts) to exponential 
functions of the form

 

Tumbler Contribution

Non-Tumbler 
ContributionReconstructed τ2 

Reconstructed τ1 

True τn

yields a reasonably accurate 
estimate for the τn. 



  

Summary

● These mediators can give rise to extended decay chains at coliders 
involving large numbers of SM particles.

● Tumblers are a novel collider signature in which multiple DVs arise in 
the same event as a consequence of sequential decays along the 
same decay chain.  

● A moderate enhancement in timing resolution relative to the ~30 ps 
that will be provided by the CMS barrel timing layer could pay huge 
dividends in terms of our ability to distinguish between different event 
topologies involving multiple displaced vertices.     

● Event-selection criteria based on the reconstruction of the LLP masses 
can efficiently discriminate between tumblers and other kinds of events 
involving multiple DVs.

● Such signatures arise naturally in new-physics scenarios in which LLPs 
themselves decay into final states involving other LLPs.
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