Effective field theory of Stückelberg vectors

Adam Martin (amarti41@nd.edu)

Based on 2204.01755 with G. Kribs (Oregon) and G. Lee (Korea U/Cornell/Toronto)

2022 Mitchell Conference, May 24th, 2022

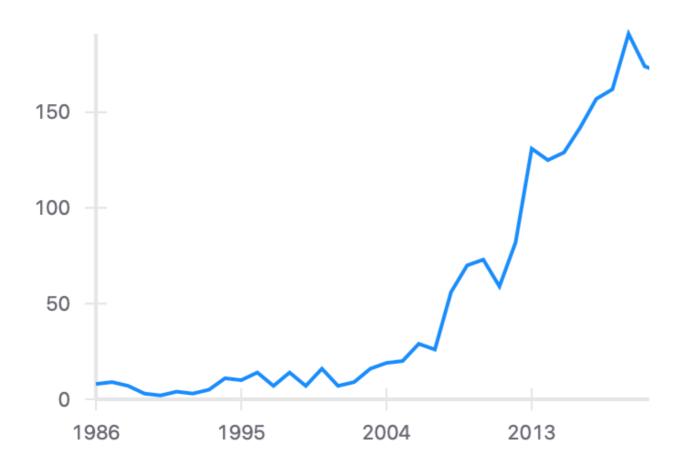
$$\mathscr{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} X_{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu} \qquad [H]$$

[Holdom '85]

-DM!

-mediators!

-light resonances!

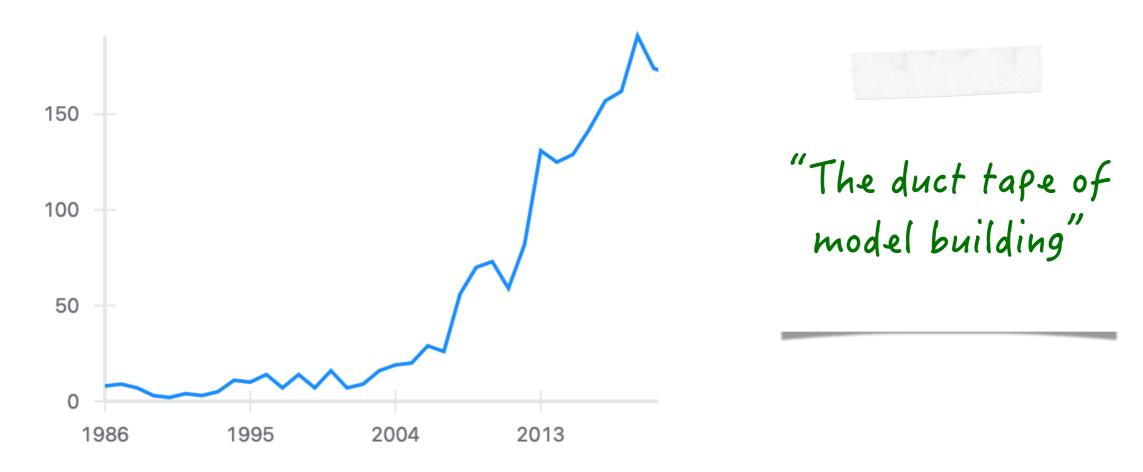


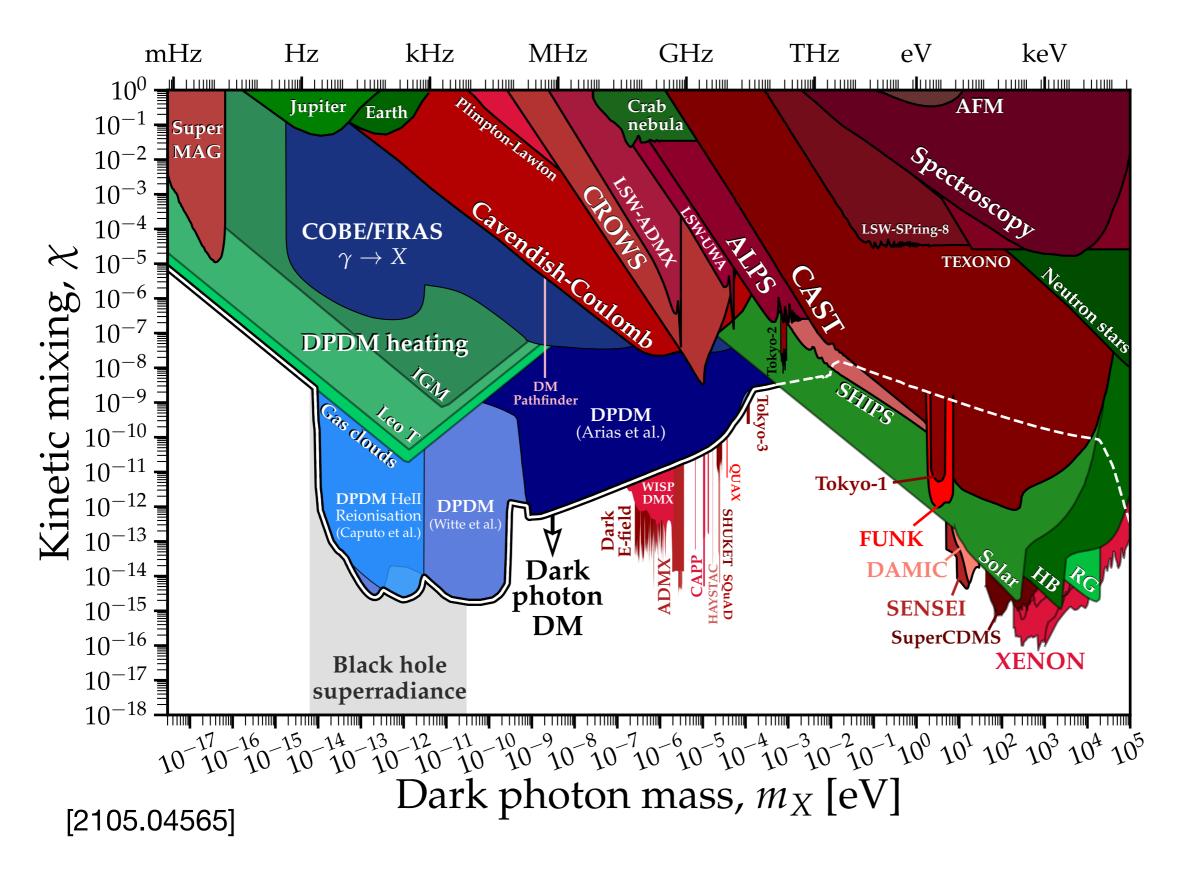
$$\mathscr{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} X_{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu}$$
 [Holdom '85]

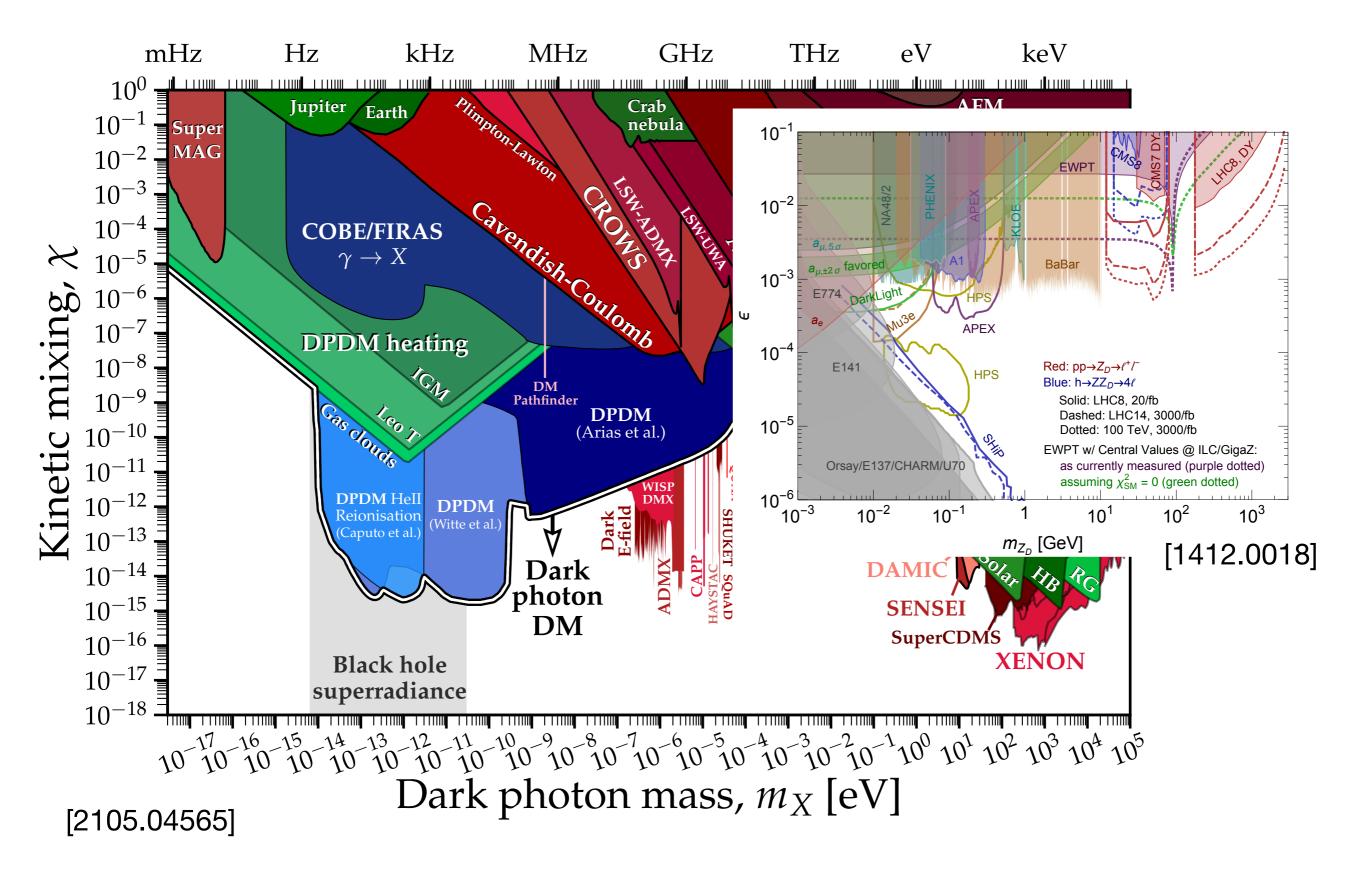
-mediators!

-light resonances!

-DM!





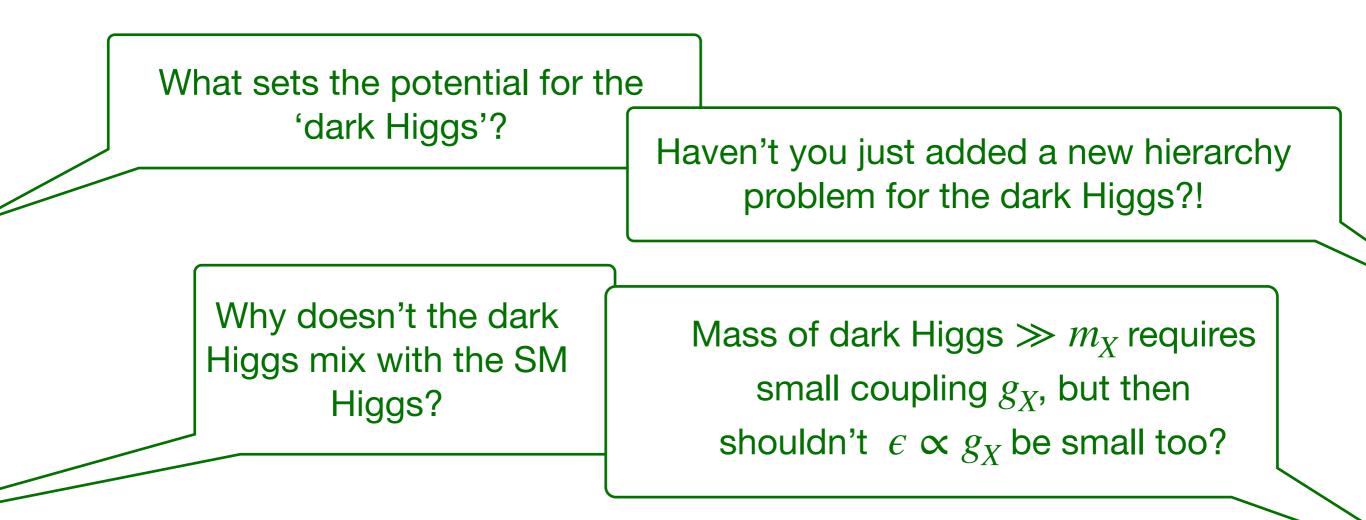


$$\mathscr{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} X_{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu}$$
 the 'dark photon model'

Vector masses from Higgsing (a 'dark Higgs') always bring up a bunch of uncomfortable naturalness questions:

$$\mathscr{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} X_{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu}$$
 the 'dark photon model'

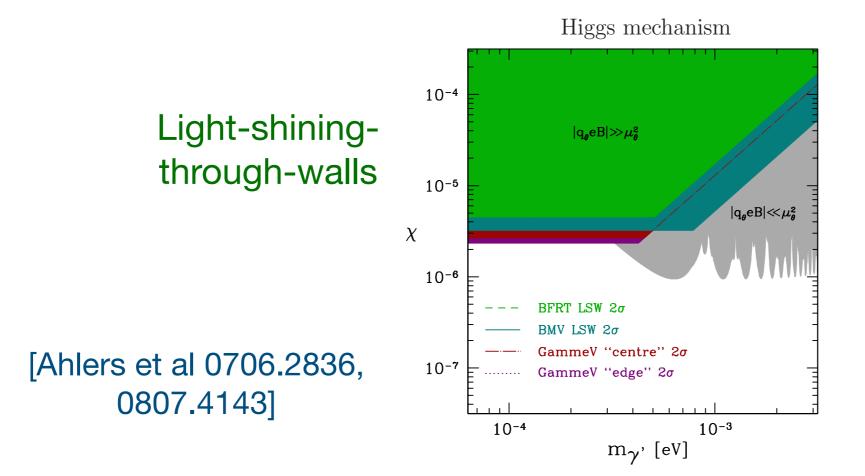
Vector masses from Higgsing (a 'dark Higgs') always bring up a bunch of uncomfortable naturalness questions:



Presence of dark Higgs (mass ~ m_x) changes phenomenology

Given large enough **T** or **B**, Higgsed theory reverts to unbroken phase $m_X \rightarrow 0$, dark Higgs acts as milli-charged particle, subject to bounds

Star cooling
$$\epsilon \leq 10^{-14} \left(\frac{e}{g_X}\right)$$
 for $m_X \lesssim$ few keV



$$\mathscr{L} \supset -\frac{\epsilon}{2} F^{\mu\nu} X_{\mu\nu} + \frac{m_X^2}{2} X_{\mu} X^{\mu} \qquad t$$

the 'dark photon model'

Model above doesn't have to address any of this! Stückelberg mass = mass for abelian vector without Higgsing!

Valid to arbitrarily high scale, two unrelated parameters m_X and ϵ

Why does this work?

There is no gauge symmetry, just a massive vector field $X_{\!\mu}$ Trick:

1.) introduce a new field π , express $X_{\mu} = A_{\mu} - \partial_{\mu}\pi/m_X$

2.) `fake' gauge symm: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha$, $\pi \rightarrow \pi + m_X \alpha$

3.) gauge fix fake symmetry in R_{ξ} gauge, [Landau gauge] $\frac{\partial_{\mu}\pi}{m_{X}}$ can be identified as the longitudinal part of X_{μ} "longitudinal equivalence"

Interaction
$$-\frac{\epsilon}{2}F^{\mu\nu}X_{\mu\nu}$$
 doesn't contain longitudinal piece

Why does this work?

There is no gauge symmetry, just a massive vector field $X_{\!\mu}$ Trick:

1.) introduce a new field π , express $X_{\mu} = A_{\mu} - \partial_{\mu} \pi / m_X$

2.) `fake' gauge symm: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha$, $\pi \rightarrow \pi + m_X \alpha$

3.) gauge fix fake symmetry in R_{ξ} gauge, [Landau gauge] $\frac{\partial_{\mu}\pi}{m_{X}}$ can be identified as the longitudinal part of X_{μ} "longitudinal equivalence"

$$\begin{split} \text{IBP:} \quad -\frac{\epsilon}{2}F_{\mu\nu}X^{\mu\nu} &\to \epsilon\, j^{\mu}_{em}\,X_{\mu} = \text{coupling to an exactly} \\ \text{conserved vector current} \end{split}$$

But if there's no gauge symmetry...

 X_{μ} is the building block we should use, not $X_{\mu
u}$

By EFT canon, we should include ALL operators — at least all renormalizable ones — consistent with symmetries

 $(X_{\mu}X^{\mu})^2$

 $X_{\mu}X^{\mu}H^{\dagger}H$

 $j^{\mu}_{arb}X^{\mu}$

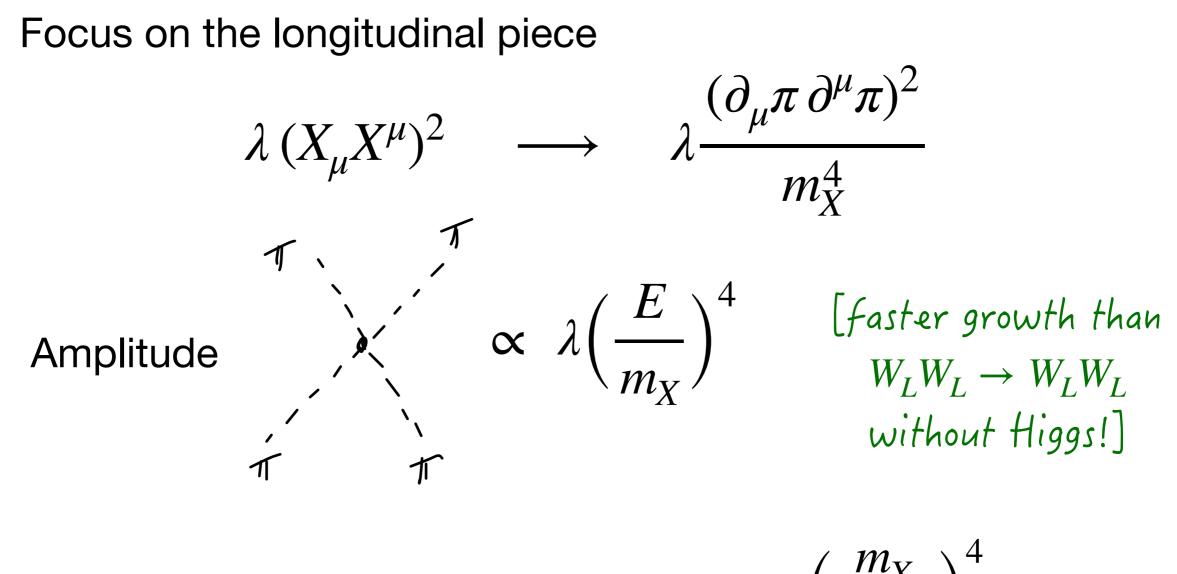
anything except conserved vector current **However:**

 $(X_{\mu}X^{\mu})^2$

 $X_{\mu}X^{\mu}H^{\dagger}H$

All lead to amplitudes that grow with energy... & therefore all require UV intervention

Example: $\lambda (X_{\mu}X^{\mu})^2$



 $\begin{array}{ll} \text{Requiring } \textbf{Amp} \leq 1 & \longrightarrow & \lambda \leq \left(\frac{m_X}{E_{max}}\right)^{\neg} \\ \text{at energy } \textbf{E}_{max} \end{array}$

Example: $\lambda (X_{\mu}X^{\mu})^2$

Focus on the longitudinal piece

e.g.
$$m_X = 1 \text{ eV}, \text{E}_{\text{max}} = 10 \text{ TeV}$$

need $\lambda \le 10^{-52}$

Famous (infamous) dark photon model doesn't generate $\lambda (X_{\mu}X^{\mu})^2$ radiatively

Famous (infamous) dark photon model doesn't generate $\lambda (X_{\mu} X^{\mu})^2$ radiatively

> But, usual lore is that gravity generates Planck suppressed operators

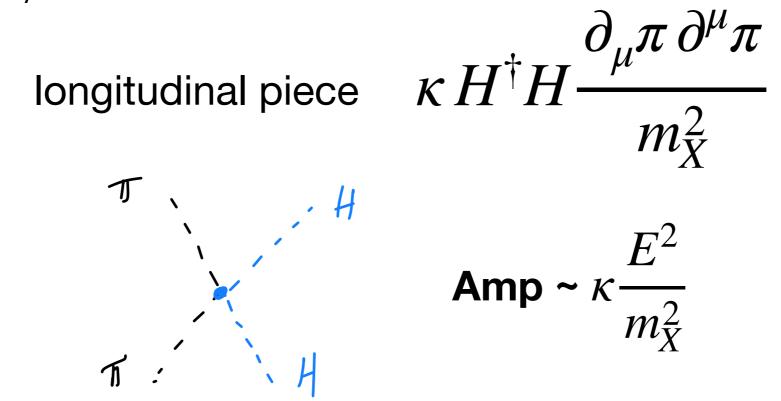
$$\frac{(X_{\mu}X^{\mu})^2 H^{\dagger}H}{M_{pl}^2}$$

$$\lambda_{eff} (X_{\mu} X^{\mu})^2$$
 with $\lambda_{eff} \sim \frac{v^2}{M_{pl}^2}$

Plug in, find:

$$E_{max} \sim 1 \,\mathrm{GeV}\left(\frac{\mathrm{m}_{\mathrm{X}}}{1 \,\mathrm{eV}}\right)$$

Example: $\kappa X_{\mu} X^{\mu} H^{\dagger} H$



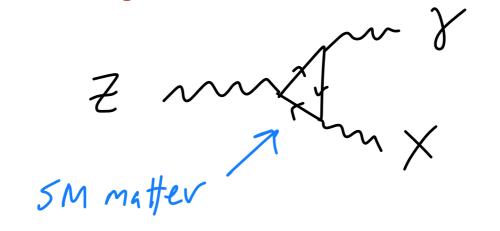
Similarly,

$$j_5^{\mu}X_{\mu}$$
 $i X^{\mu}H^{\dagger}\overleftrightarrow{D}_{\mu}H$

generate amplitudes that grow with energy to some power (always $\propto m_f$)

Example: $g_X j^{\mu}_{anom} X_{\mu}$ vector, anomalous current, e.g. baryon #

If X_{μ} were gauged: **anomaly!**



Anomaly can be fixed by adding more matter, heavy 'anomalons'.

Example: $g_X j_{anom}^{\mu} X_{\mu}$ vector, anomalous current, e.g. baryon #

If X_{μ} were gauged: **anomaly!**

Z MAL Z MAL SM matter SM m

Anomaly can be fixed by adding more matter, heavy 'anomalons'.

Example: $g_X j_{anom}^{\mu} X_{\mu}$ vector, anomalous current, e.g. baryon #

If X_{μ} were gauged: **anomaly!**

Z Matter SM matter SM matter

Anomaly can be fixed by adding more matter, heavy 'anomalons'.

But there are non-decoupling effects

[Dror, Lasenby, Pospelov '17]

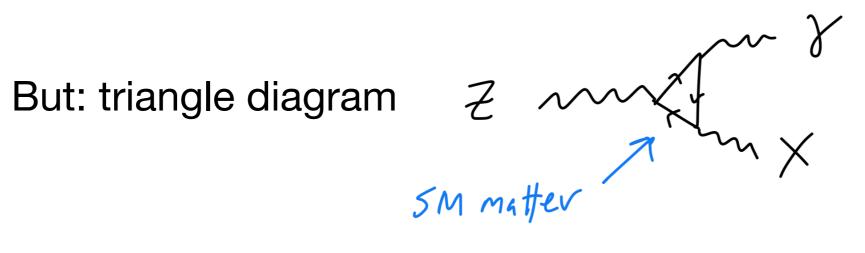
Z matter SM matter + heavy anomalous 4

longitudinal enhancement, e.g: $\Gamma(Z \to X_L \gamma) \sim M_Z \left(\frac{M_Z^2}{m_V^2}\right)$

Stückelberg case: $g_X j^{\mu}_{anom} X_{\mu}$ global current

No gauged symmetry! Fermions don't transform, no Fujikawa argument — no anomaly Stückelberg case: $g_X j^{\mu}_{anom} X_{\mu}$ global current

No gauged symmetry! Fermions don't transform, no Fujikawa argument – no anomaly



yields the same result as the gauged + anomalon setup

$$\Gamma(Z \to X_L \gamma) \sim M_Z \left(\frac{M_Z^2}{m_X^2}\right)$$

Stückelberg case: $g_X j^{\mu}_{anom} X_{\mu}$ global current

No gauged symmetry! Fermions don't transform, no Fujikawa argument — no anomaly

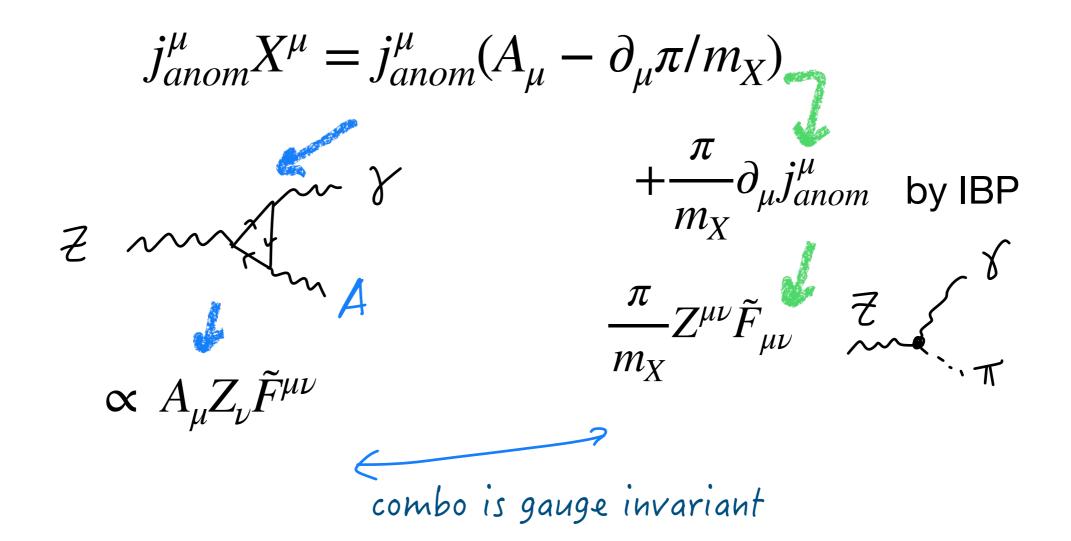
yields the same result as the gauged + anomalon setup

$$\Gamma(Z \to X_L \gamma) \sim M_Z \left(\frac{M_Z^2}{m_X^2}\right)$$

So, longitudinal enhancement isn't a smoking gun for gauge anomaly. It's a consequence of **global anomaly**

Another perspective

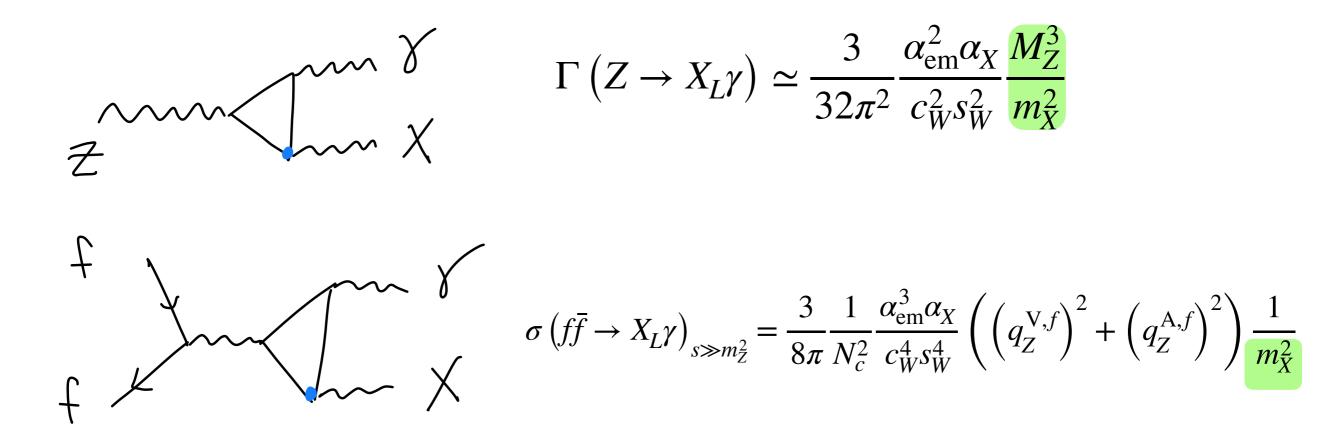
Fake gauge trick again



Exactly the 4D Green Schwarz anomaly cancellation mechanism

So, longitudinal enhancement isn't a smoking gun for gauge anomaly. It's a consequence of **global anomaly**

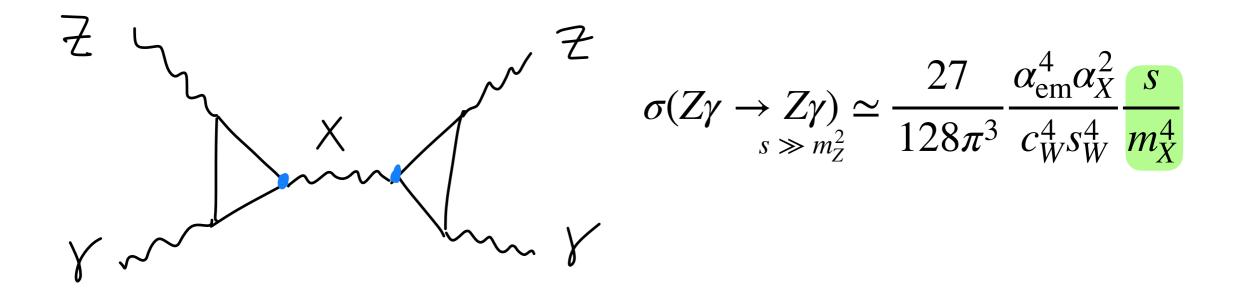
As with other examples, longitudinal enhancement points to UV breakdown



Can be translated into bounds on g_X or m_X

So, longitudinal enhancement isn't a smoking gun for gauge anomaly. It's a consequence of **global anomaly**

As with other examples, longitudinal enhancement points to UV breakdown



For $g_X j_{anom}^{\mu} X_{\mu}$: since global anomaly is the root cause: cannot distinguish gauged theory + anomalons vs. Stückelberg via longitudinal enhancement alone [Dedes, Suxho '12]

Conclusions

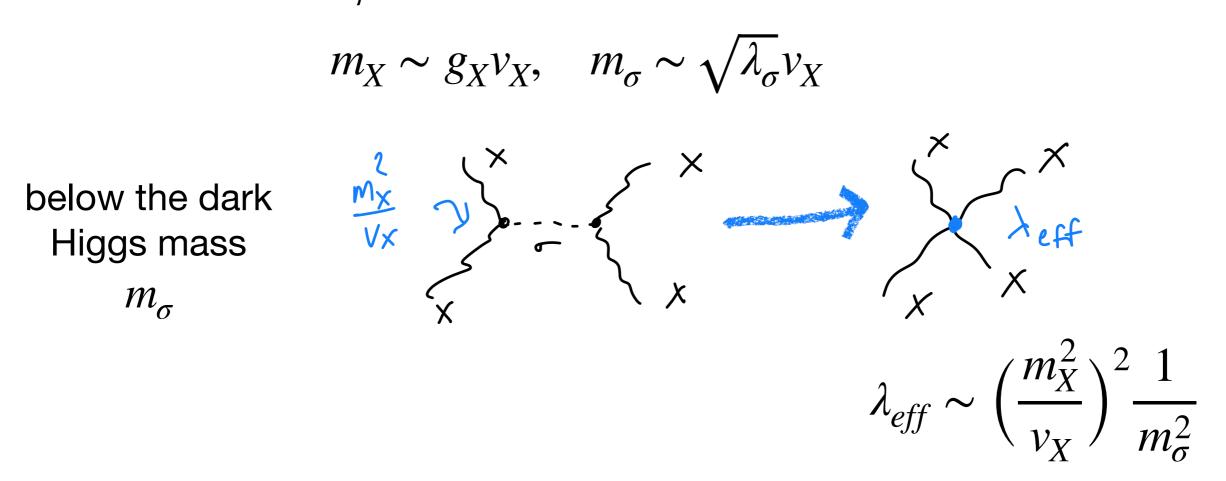
• There's no free lunch with light vectors

• Stückelberg setup means you don't have to explain the origin of m_X

... but the only way to avoid inevitable UV breakdown (& need for more model building) is to stick to very specific, non-generic Lagrangian

EXTRA

Higged case: $\lambda (X_{\mu}X^{\mu})^2$

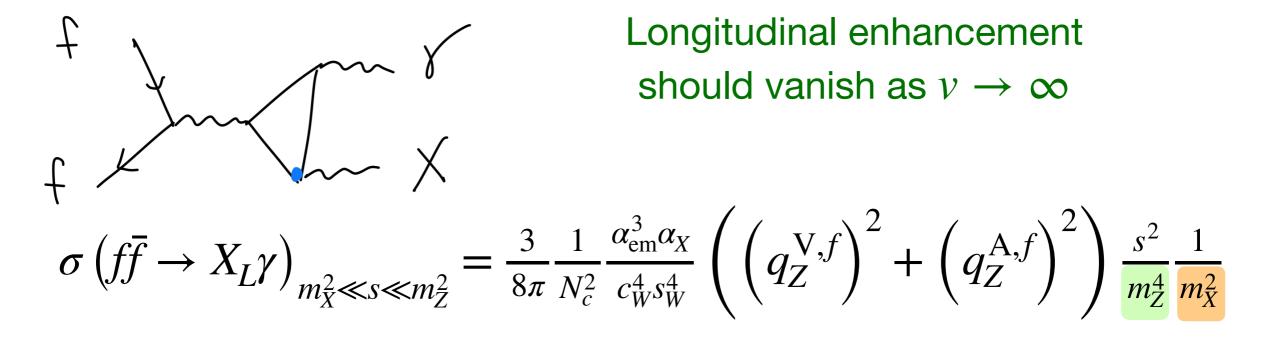


Plug in to validity formula:

$$E_{max}^{4} \sim \frac{m_X^4}{\lambda_{eff}} \sim \frac{m_K^4}{n_x^4} v_X^2 m_\sigma^2 \sim \lambda_\sigma v_X^4$$

so $E_{max} \sim v_X$ as expected

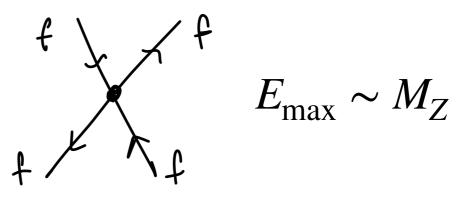
Below weak scale: baryon # anomaly free w/ respect to $SU(3)_c \otimes U(1)_{em}$



But, process above predicts

$$E_{\max} \sim \frac{1}{\alpha_{\rm em}^{1/2} \alpha_X^{1/6}} \left(\frac{m_X}{M_Z}\right)^{1/3} M_Z$$

Different scaling that E_{max} from e.g. four fermion interaction



Requiring $E_{\max}(\bar{f}f \rightarrow X_L \gamma) \ge M_Z$, can derive bounds on m_X