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This is a talk about string phenomenology
(i.e., extracting “low-energy” phenomenological 
predictions from string theory).

Traditional approach ---

● Start with a suitable vacuum (“string model”)
● Enumerate the massless states that arise in such models
● Construct a field-theoretic Lagrangian that describes the 

dynamics of these states
● Analyze this Lagrangian using all of the regular tools of QFT 

without further regard for the origins of these states within 
string theory. 

Indeed, this treatment may well be sufficient for certain purposes.

However, we will not be practicing 
string phenomenology in the usual way.



Unfortunately, calculations performed in this manner have 
a serious shortcoming:

By disregarding the infinite towers of string states that necessarily 
accompany these low-lying modes within the full string theory, such 

calculations implicitly disregard many of the underlying string 
symmetries that ultimately endow string theory with a plethora of 

remarkable properties that transcend our field-theoretic expectations.

?  

● These states are usually at the Planck scale, or at the 
scales associated with the compactification geometry!   
How can they ever play an important role for low-
energy phenomenology?

● Can’t they just be integrated out, leaving behind higher-
dimensional operators suppressed by powers of these 
heavy scales?

● Wouldn’t this justify the usual treatment?



However, there are reasons to take pause...

● We would not be integrating out one or two or 
three heavy states.   We would be integrating out 
infinite towers of states!  

● Even more severely, these towers of states have 
degeneracies that grow exponentially with their 
masses!  

● Can this still leave behind a power-law 
suppression of higher-dimensional operators?

Hagedorn

Natural to expect that these infinite towers of states would 
particularly affect quantities (such as the Higgs mass and 
cosmological constant) which have positive mass dimension 
and are therefore sensitive to all mass scales in the theory.



Moreover, all of these states together play an important role in  

● The physics of closed strings compactified on a small 
compactification volume is indistinguishable from the physics 
associated with strings compactified on a large compactification 
volume.   

● Suggests some sort of stringy “equivalence” between UV and 
IR physics!

    

How to incorporate such symmetries within an EFT approach in which 
we integrate out heavy states while treating light states as dynamical?

Classic and earliest example:   T-duality

UV/IR mixing



This talk

● A pictorial way of thinking about UV/IR mixing
● A quick introduction to what happens in string theory and 

why the infinite towers of string states cannot be ignored
● How this affects the divergence structure of the theory

● cosmological constant
● misaligned SUSY
● Higgs mass and how it runs

● Ruminations regarding hierarchy problems

Aimed at field theorists and phenomenologists

What miracles occur when the entire towers 
of string states are properly included?



Let’s start the story by examining the 
one-loop CW effective potential in field theory.

Summation over 
spectrum 

number of states 
(# bosons - # fermions) 
=0 for SUSY

It turns out that the best way to connect to what we will eventually need 
for string theory is through the Schwinger worldline formalism.

● Purely field-theoretic formalism 
● Calculate A(x,y,t) = amplitude for particle to move from x to y within a 

fixed (proper) time t.       “Schwinger proper time”
● In some sense, t is the total “length” of the worldline around the bubble.
● Total propagator D(x,y) is then the integral of this amplitude A(t) over all t.

Algebraically, this amounts to using the identity
and then 
dropping the 
x-
independent 
term



We thus obtain

perform p-integrations

But t has mass dimension -2. 
Make dimensionless:  

(m = arbitrary scale)

Identify as “partition 
function” with (-1)F 
statistics weighting

Thus m sets 
scale of L.



We thus have

IR

UV



We thus have

IR

UV

Final step:   With an eye towards 
an eventual connection to string theory, 
let’s introduce a dummy variable and 
enlarge our region of integration.

IR

UV

+1/2-1/2

the “strip” S



Thus, within 
ordinary QFT, 
we have

where

+1/2-1/2

S



Thus, within 
ordinary QFT, 
we have

where

+1/2-1/2

S
IR divergences arise here
(behavior of Z as t2 → infinity)

UV divergences arise here 
(behavior of Z as t2 → 0)

How to handle divergences?

● IR divergences as t2 → infinity 
(lightest states dominate)

● UV divergences as t2 → 0 
● (opposite limit:  all states    

contribute equally)  



Thus, within 
ordinary QFT, 
we have

where

+1/2-1/2

S
IR divergences arise here
(behavior of Z as t2 → infinity)

UV divergences arise here 
(behavior of Z as t2 → 0)

IR cutoff:   

UV cutoff:   

introduce 
either cutoff as 
needed → new 
mass scales

● IR divergences as t2 → infinity 
(lightest states dominate)

● UV divergences as t2 → 0 
● (opposite limit:  all states    

contribute equally)  



Thus far, we have stayed within traditional QFT.
But now let’s ask a hypothetical question:

What if our theory had an exact symmetry under

?

Such a symmetry is clearly not field-theoretic!   
But let’s pursue this anyway.

● What effects would this have?
● How could we interpret this?



where

+1/2-1/2

S

1

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

Flip symmetry 
across t2=1 
line!



where

+1/2-1/2

S

1

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

Flip symmetry 
across t2=1 
line!

S1

S2

● Physics from S1 and S2 
integration regions 
becomes identical!

● S1 and S2 provide 
redundant descriptions of 
the same physics!

● Thus, UV divergence must 
also be the same as IR 
divergence, likewise 
attributable to same 
underlying physics!   



where

+1/2-1/2

S

1

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

Flip symmetry 
across t2=1 
line!

S1

S2

● Due to redundancy, total 
integral is 2x contribution 
from either S1 or S2 alone.

● Factor of 2 reflects the 
number of identical copies 
that make up the strip.

● S2 is the image of S1 under 
the action of the symmetry. 
Likewise, S1 is the image 
of S2.



Sound familiar?

● Redundancy of description is like a gauge symmetry!            
Integrating over both S1 and S2 is like integrating over all of the 
gauge slices!  Of course, there are only two gauge slices in this 
little example, and the overall factor of 2 is the “gauge volume”. 
Still, the appropriate treatment is the same:    Effectively divide 
out by the gauge volume by choosing only one gauge slice!



where

+1/2-1/2

S

1

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

FOLD THE 
STRIP 
ACROSS 
THIS LINE

S2

S1



where

+1/2-1/2

S

1

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

FOLD THE 
STRIP 
ACROSS 
THIS LINE

S2

S1

+1/2-1/2

S

1

S1



where

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

+1/2-1/2

S

1

S1
● Now integrate over S1, not S.
● We have truncated the strip to just 

one slice.
● This eliminates the spurious factor 

of 2.
● Of course, could have chosen to fold 

the strip the other way, keeping S2 
rather than S1.



where

● Strip is invariant
● Measure is invariant
● Thus, partition function 

must also be invariant  
in such a theory!

+1/2-1/2

S

1

S1
● The bottom part is folded onto the top part.
● There is no longer a unique up or down 

direction on the remaining segment!   No 
notion of increasingly UV or IR “directions” 
→ all directionality is lost.  “Non-orientable”  

● The two divergences (UV and IR) have been 
folded on top of each other!

● Thus, there is only one divergence.            
You can call it UV or IR according to your 
choice/convention → meaningless distinction! 

But what does this folding imply for 
UV versus IR?



Of course, this nightmare arises only if we have the
t2 → 1/t2 symmetry.

Can this ever really happen
in field theory?

Not likely...
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● Strip is invariant … ALREADY TRUE
● Measure is invariant … ALREADY TRUE

Recall



where

● Strip is invariant … ALREADY TRUE
● Measure is invariant … ALREADY TRUE
● Thus, partition function must also be 

invariant in such a theory! … VERY 
HARD TO ARRANGE

Recall

Each t2 factor 
gets inverted in 
the exponential!   
Is there some 
mathematical 
identity?



where

● Strip is invariant … ALREADY TRUE
● Measure is invariant … ALREADY TRUE
● Thus, partition function must also be 

invariant in such a theory! … VERY 
HARD TO ARRANGE

Recall

Each t2 factor 
gets inverted in 
the exponential!   
Is there some 
mathematical 
identity?

Yes!

“Poisson resummation”

But this could only be useful if there were an infinite tower of states!  Rather 
sick from a field-theoretic perspective….  (Must also have very tight balancing 
of masses and degeneracies at each level in order for such identities to apply.)

Just one of a whole series of 
similar identities involving 
infinite sums of exponentials 



So now let’s turn to string theory!

What actually happens in string theory?

We shall focus on closed perturbative strings.   
This is a huge class, including Type II strings as 
well as heterotic strings formulated in any number 
of spacetime dimensions with any spacetime 
compactification manifold (or orbifold thereof), 
with or without spacetime SUSY.  No restrictions 
on particle content, gauge symmetries, etc.

Note:



String Theory 101

● Worldlines becomes worldsheets!
● Different configurations/excitations of 

worldsheet are different particles in spacetime.
● Excitations come in three varieties:

● oscillators:  quantum fluctuations of the 
string itself, masses depend on tension of 
the string (string scale)

● KK modes:    independent of string scale, 
masses depend on compactification radii

● winding modes:   strings wrapping around 
compactified directions, depend on both 
string tension and compactification radii.

● Excitations of string worldsheet are like waves 
on the worldsheet:  can propagate clockwise or 
counterclockwise around worldsheet.   “LM” 
versus “RM” modes.

● Because of oscillators, total number of 
string states of a given mass grows 
exponentially with mass.   (Hagedorn)



How to calculate one-loop L in string theory? 

This generalizes to the 
“shape” of the torus.  We 
then integrate over all shapes 
without overcounting.

Note:   We care about 
shape, not volume.   

Schwinger proper time  t  
described the length of the circle
(length around single cycle).     
We then integrated over all t.
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In general, three real quantities
(R1, R2, q) describe the two cycles of torus.  
Identify points related by...
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“shape” of the torus.  We 
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described the length of the circle
(length around single cycle).     
We then integrated over all t.



How to calculate one-loop L in string theory? 

Note:   We care about 
shape, not volume.   

In general, three real quantities
(R1, R2, q) describe the two cycles of torus.  
Identify points related by...

1

t

This generalizes to the 
“shape” of the torus.  We 
then integrate over all shapes 
without overcounting.

Schwinger proper time  t  
described the length of the circle
(length around single cycle).     
We then integrated over all t.



● Is there any redundancy in this description? 
● Are there different values of  t  that give the same fundamental cell?

t
1

Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.
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t,  t+1, t+2,  …
    
       

Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.

“shift”“shift”



● Is there any redundancy in this description? 
● Are there different values of  t  that give the same fundamental cell?

t
1

t+1

1 1

-1/t

Same lattice,
only rotated!

t,  t+1, t+2,  …
     -1/t ,  
   

Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.
Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.

“shift”“shift” “invert”“shift”“shift” “invert”
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● Is there any redundancy in this description? 
● Are there different values of  t  that give the same fundamental cell?

t
1

t+1

1 1

-1/t

Same lattice,
only rotated!

t,  t+1, t+2,  …
     -1/t ,  -1/t + 1, -1/t + 2 , …
     -1/(t+1), -1/(t+2),   -1/(t+1)+1, ...   …

Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.

}
For any t, all of these describe same torus! 
Modular group!

Torus shape can be described through a complex number  t  in the UHP.   
Recurring cycles of the torus map out a lattice in the plane.

ad-bc=1
divide by Z2

“shift”“shift” “invert”



Thus the modular group describes the t-redundancies inherent in 
describing tori.   Tori are unchanged (“conformally equivalent” = 
same shape) under all transformations in the complex plane of the form

Call this G.

Infinite-
dimensional.



Thus the modular group describes the t-redundancies inherent in 
describing tori.   Tori are unchanged (“conformally equivalent” = 
same shape) under all transformations in the complex plane of the form

It turns out that all elements of G 
can be generated as sequences

 of two fundamental generators:

t,  t+1, t+2,  …
     -1/t ,  -1/t + 1, -1/t + 2 , …
     -1/(t+1), -1/(t+2),   -1/(t+1)+1, ...   …

e.g.,

1, T, T2, …
   S, TS, T2S, …
   ST, ST2, …, TST, ...

                                                       

Call this G.

Infinite-
dimensional.

“shift”“shift”

“invert”



Thus the modular group describes the t-redundancies inherent in 
describing tori.   Tori are unchanged (“conformally equivalent” = 
same shape) under all transformations in the complex plane of the form

It turns out that all elements of G 
can be generated as sequences

 of two fundamental generators:

t,  t+1, t+2,  …
     -1/t ,  -1/t + 1, -1/t + 2 , …
     -1/(t+1), -1/(t+2),   -1/(t+1)+1, ...   …

1, T, T2, …
   S, TS, T2S, …
   ST, ST2, …, TST, ...

                                                       

Call this G.

Important subgroup:

Infinite-
dimensional.

e.g.,

“shift”“shift”

“invert”



● The complex upper half-plane of  t  describes all possible tori, but 
redundancy group G describes the conformally equivalent tori.

● Again, just like a gauge theory redundancy!

What, then, is the subregion that captures just one copy of 
each torus without overcounting (one “gauge slice”)?
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● The complex upper half-plane of  t  describes all possible tori, but 
redundancy group G describes the conformally equivalent tori.

● Again, just like a gauge theory redundancy!
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Start with upper 
complex t -plane.

t

T generator
t → t + 1:

t
Strip

S

What, then, is the subregion that captures just one copy of 
each torus without overcounting (one “gauge slice”)?



● The complex upper half-plane of  t  describes all possible tori, but 
redundancy group G describes the conformally equivalent tori.

● Again, just like a gauge theory redundancy!

+1/2-1/2

Start with upper 
complex t -plane.

t

T generator
t → t + 1:

S generator
t →-1/t 

(|t|→ 1/|t|):

t

+1/2-1/2

t

1

Strip

S F

What, then, is the subregion that captures just one copy of 
each torus without overcounting (one “gauge slice”)?

fundamental 
domain of the 
modular group



Let’s study this last step in more detail...

+1/2-1/2

t

+1/2-1/2

t
1

Strip

S F

 S ● Looks like field theory!
● Fundamental domain of  

subgroup generated by 
T alone

F   ● String theory!
● Fundamental domain of full 

modular group G generated 
by both S and T

How many “gauge slices” --- i.e., how many copies of  F  within S  ?  



Let’s study this last step in more detail...

+1/2-1/2

t

+1/2-1/2

t
1

Strip

S F

 S ● Looks like field theory!
● Fundamental domain of  

subgroup generated by 
T alone

F   ● String theory!
● Fundamental domain of full 

modular group G generated 
by both S and T

How many “gauge slices” --- i.e., how many copies of  F  within S  ?  

● In previous case with t→1/t folding, answer was 2.
● Answer now is the dimensionality of the coset      



F

FS

FST-1 FST 

• There are an 
infinity of 
domains!

• Each domain is 
equally valid

• Together these 
fundamental 
domains 
completely fill 
the strip

• Each domain 
has a unique 
UV/IR cusp.  



F

FS

FST-1 FST 

Linear fractional transformations (az+b)/(cz+d) 
map lines and circles to lines and circles.

Lines and circles!



“The 
Modular 
Cabinet”

Richard Pink 
https://people.math.ethz.ch/~pink/ModularCabinet/cabinet.html

A whole new meaning to the phrase “modular furniture”…



F

FS

FST-1 FST 

• Thus in string 
theory we are 
instructed to 
“fold” the strip 
S into F !

• Requires an 
infinite number 
of folds!

• Once folding is 
done, all 
“cusps” lie atop 
each other at 
the cusp at
t = i*infinity!



SBut the consequences 
of “folding” S  into F 
are profound!

● The lower portions of S are folded 
upwards into F.

● Could have equivalently chosen to 
fold S into SF.

● There is no longer a unique up or 
down direction on the remaining 
segment!   No notion of 
increasingly UV or IR “directions”.  

● There is only one possible 
divergence.   You can call it UV or 
IR according to your choice/ 
convention (e.g., F versus SF )  → 
meaningless distinction!  

… just like previous 
t2→1/t2 example!



SBut the consequences 
of “folding” S  into F 
are profound!

● The lower portions of S are folded 
upwards into F.

● Could have equivalently chosen to 
fold S into SF.

● There is no longer a unique up or 
down direction on the remaining 
segment!   No notion of 
increasingly UV or IR “directions”.  

● There is only one possible 
divergence.   You can call it UV or 
IR according to your choice/ 
convention (e.g., F versus SF )  → 
meaningless distinction!  

● Infinitely many foldings are required!  We 
are thus essentially dividing by an infinite 
gauge “volume”!    

● Equivalently, an infinite number of field-
theory divergences are eliminated, leaving 
only a single string divergence!

● Thus modular invariance not only relates 
UV and IR divergences to each other, but 
also softens them since we are dividing out 
by the infinite number of copies!

● Essentially some of the divergences of 
field theory are reinterpreted as a spurious 
“gauge” volume and thereby eliminated!

Additional feature!

… just like previous 
t2→1/t2 example!



Schematically, we therefore have

S

# redundant 
copies

Inverting this procedure, each string divergence “unfolds” into what would 
appear to be a combination of IR and UV divergences in field theory.



For example, consider the cosmological constant in string theory.

● Tree-level contribution 
vanishes by conformal 
invariance

● Leading contribution is thus 
actually L.

In F-representation, only possible divergence is “IR” 
from t2 → infinity region.    Thus divergences are 
governed by lightest states.  All consistent string models 
contain tachyonic “proto-graviton” states with ML

2 <0 
and MR

2=0, but these are not level-matched and make 
no contributions in this region of F.   Massless states 
also do not lead to divergences.

L  is actually finite in string theory!    
(not quartically divergent, as would arise in field theory 
for analogous one-loop diagram)

“Proto-graviton 
theorem”:
KRD, 1990 (PRL) 

even without 
SUSY!



Misaligned SUSY

In any tachyon-free closed string theory, spacetime SUSY may be broken but a 
residual “misaligned SUSY” must always remain in the string spectrum!

● Functional forms F(n) cancel even if 
numbers of states do not. 

● SUSY is special case where sectors 
are “aligned”.

● As sectors become misaligned, new 
states must populate each level to 
preserve F(n). 

● In all cases, all masses (UV/IR) 
conspire together!  --- describes 
maximum degree to which SUSY may 
be broken in string theory.

● General feature of all closed string 
models, and serves as the way in 
which the spectrum of a given string 
theory manages to configure itself at 
all mass levels so as to maintain 
finiteness --- even without SUSY. 

● KRD, 1994  (hep-th/9402006)



Actual string models...



where
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reduced string scale

supertrace definition appropriate for theories 
with infinite towers of states, regulated in a 
modular-invariant manner.   ONLY 
PHYSICAL STATES CONTRIBUTE!

even 
without 
SUSY!!

Moreover, one can even show



● KRD, M. Moshe & R.C. Myers, 
1995 (PRL)

reduced string scale

Very different from field theory, where   
● Str 1     governs quartic divergence of L
● Str M2  governs quadratic divergence of L
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SUSY!!

where supertrace definition appropriate for theories 
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modular-invariant manner.   ONLY 
PHYSICAL STATES CONTRIBUTE!

Moreover, one can even show



● KRD, M. Moshe & R.C. Myers, 
1995 (PRL)

reduced string scale

These supertrace relations are realized 
through misaligned SUSY and thus hold for all 

closed string theories.  Indeed, misaligned 
SUSY explains how the Hagedorn phenomenon 

is reconciled with such finite supertraces! 

Very different from field theory, where   
● Str 1     governs quartic divergence of L
● Str M2  governs quadratic divergence of L

 

Moreover, one can even show

even 
without 
SUSY!!

even 
without 
SUSY!!

where supertrace definition appropriate for theories 
with infinite towers of states, regulated in a 
modular-invariant manner.   ONLY 
PHYSICAL STATES CONTRIBUTE!



Let’s now turn to the Higgs mass!
Can we use this technology to calculate 
the Higgs mass in string theory?

 

“Higgs”  --- any scalar field sitting at the 
minimum of a potential whose VEV 
affects the masses of particles in the string 
spectrum, regardless of the gauge 
symmetries this VEV may break.   Thus 
we include the SM Higgs, but also include 
other kinds of Higgses and moduli. 

Yes!



We find



where

How masses of 
string states respond 
to fluctuations of 
Higgs field

We find



where

The cosmological constant!

The X-terms capture the effects of the mass shifts induced by the fluctuations of 
the Higgs fields.   However, in string theory, there will also be gravitational 
back-reactions (specifically deformations of the moduli fields) arising from 
these fluctuations.   These effects can also make contributions to the Higgs mass.  
These contributions should be universal, independent of specific X-insertions.   
This is the cosmological constant!   

How masses of 
string states respond 
to fluctuations of 
Higgs field

We find



In ordinary QFT, we would not expect to find such a relation between a 
Higgs mass and a cosmological constant.   Indeed, QFTs do not involve 

gravity and are thus insensitive to the absolute zero of energy.   Even worse, 
in quantum field theory, the one-loop zero-point function is badly divergent. 

 

String theory, by contrast, not only unifies gauge theories with gravity but 
also yields a finite Λ (the latter occurring as yet another by-product of 
modular invariance). Thus, it is only within a string context that such a 

relation could ever arise.  

It is intriguing that such relations join together precisely the two quantities 
(mϕ and Λ) whose values lie at the heart of the two most pressing hierarchy 

problems in modern physics.

Editorial comment ---



● Just as the one-loop vacuum energy in any tachyon-free closed 
string theory is finite as a result of modular invariance, the 
corresponding Higgs mass is at most logarithmically divergent 
(depending on net number of massless X2-charged states).

● Modular invariance has thus induced a significant softening of the 
Higgs divergence, reducing what would have been a quadratic UV 
Higgs divergence in field theory into a logarithmic Higgs 
divergence in string theory.

Moreover... 



To study this potential divergence, require a regulator.

While many different regulators are possible, for consistency 
must choose regulator which respects full modular symmetry, 
treating infinite towers of string states together in a unified 
way.

Can then interpret regulator parameter(s) as a corresponding  

spacetime RGE scale  m.

In this way, we obtain a full, string-theoretic running of the 
Higgs mass...



… multiplied 
by x/(4p2M2)

where

combinations of infinite sums of modified Bessel functions 
of the second kind...

Bessel functions!



“IR” limit: 
  

… multiplied 
by x/(4p2M2)

All states contribute, 
even in deep IR !

assuming



Generally logarithmic, 
can become effectively 
power-law if density of 
X2-charged states is high

Blue curve only
if non-zero net # 
of massless X2-
charged states

Mlightest ~ 
mass of lightest 
massive X2-
charged states 

“Dual” region!



Scale duality!

m  →  Ms
2 / m



There is a maximum degree to which 
we can probe “UV” behavior --- 

increasing m further only re-introduces 
IR-like behavior!

Background colors 
indicate this duality

Theory must have vanishing         
b-function at self-dual scale!



Scale duality requires that even the “deep IR” (which would ordinarily 
only care about light states) must know about the “dual deep IR” (in which 

all states contribute)!   Both must be determined/regulated together!
\



Indeed, inherent in any such attempt to extract an EFT description 
from a modular-invariant UV/IR mixed theory is a choice of 
direction as to 

● what constitutes “UV” (integrate out); 
● what constitutes “IR” (retain).

Making such a choice (in order to establish an EFT) therefore 
inherently breaks modular invariance!

Scale duality is thus part of a deeper structure which exposes the 
role of EFTs in modular-invariant UV/IR mixed theories…..



Identify

Scale duality then requires

Mapping between WS 
and ST physics has two 
branches!  
→ Four-fold symmetry!}



Whither EFTs?

To what extent do EFTs provide relevant 
low-energy descriptions of string theory?

● As discussed, one must break modular invariance (choose a branch) in order to 
build an appropriate EFT.

● Certainly for  m << Ms, the features associated with scale duality are “far away”, 
not directly relevant.

● Thus, within certain range of scales, the theory then behaves as one would 
expect for an EFT except

● Divergences are softened, running is different (e.g., log running for Higgs) 
● Even in this region the theory is still sensitive to the infinite towers of 

states. Running governed by supertraces over all states. 
● EFT-like behavior also cuts off as one approaches the deep IR --- required 

since theory must remain sensitive to infinite towers and match the “dual” 
deep IR in which all states contribute.   For example, “IR” limit of Higgs 
mass becomes finite!   Thus new IR behavior induces new features (such 
as the “dip” region) which are entirely stringy.

Caution advised, must understand the context and purpose.
(Consult a professional near you.)



Our results suggest that L and mf 
problems can be reformulated to the form:  

Reminiscent of Veltman conditions,                            
but with supertraces over all states!

Can we exploit the “dip” region 
to make mf2 < 0 to trigger 
EWSB??     Would require: 

But overall:   Hierarchy problems assume traditional field-theory relationships 
between UV and IR.   By contrast, string theory tells us that we have UV/IR 

mixing, softened divergences (even finiteness), scale duality, etc.   Thus hierarchy 
problems may not be fundamental or survive in the manner we normally assume.

1

2

3
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