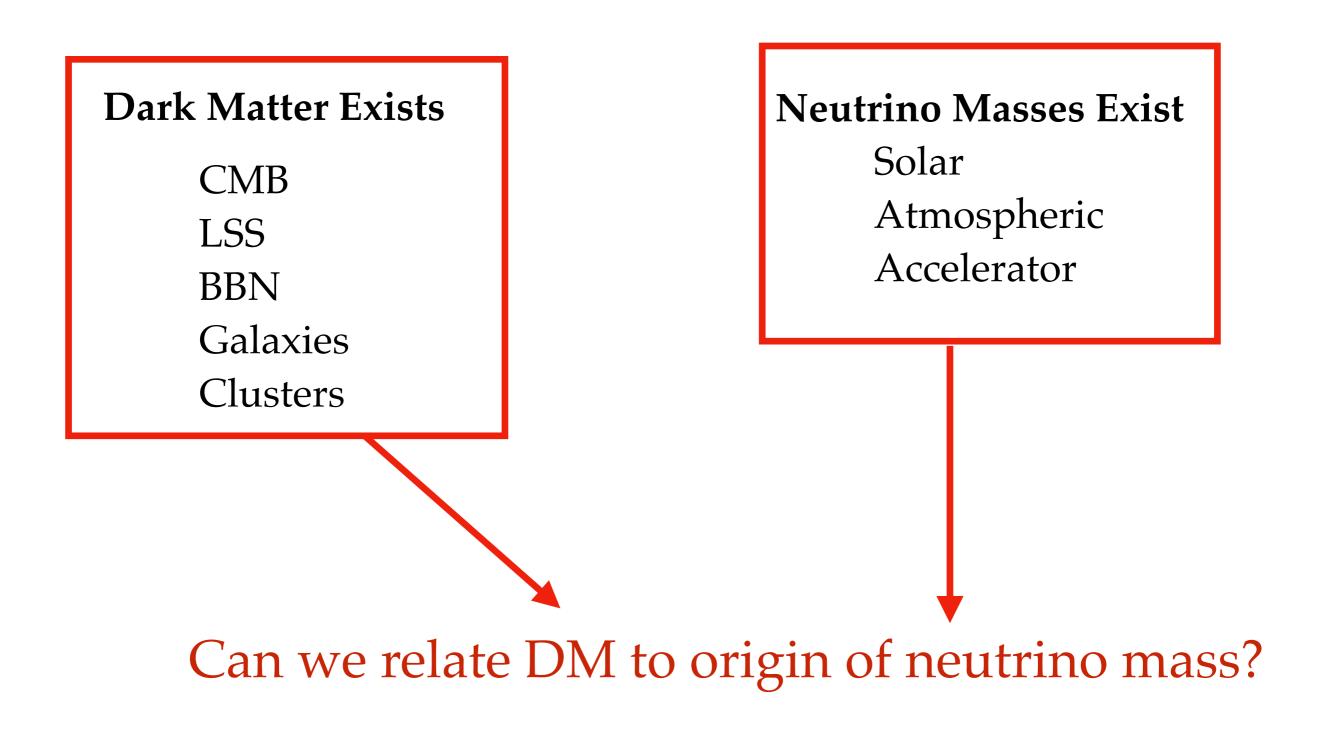


Ultrafeeble Neutrino Interactions w/ Ultralight DM Gordan Krnjaic FNAL/UChicago

2205.06821 + Abhish Dev, Pedro Machado, Hari Ramani Mitchell 2022, May 26, 2022



Model Description

Oscillations Regimes

Electron Neutrino Constraints

Mu/Tau Neutrino Variation

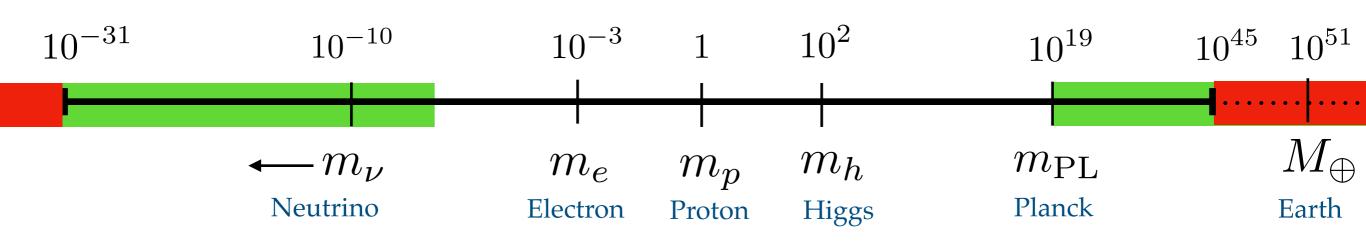
Model Description

Oscillations Regimes

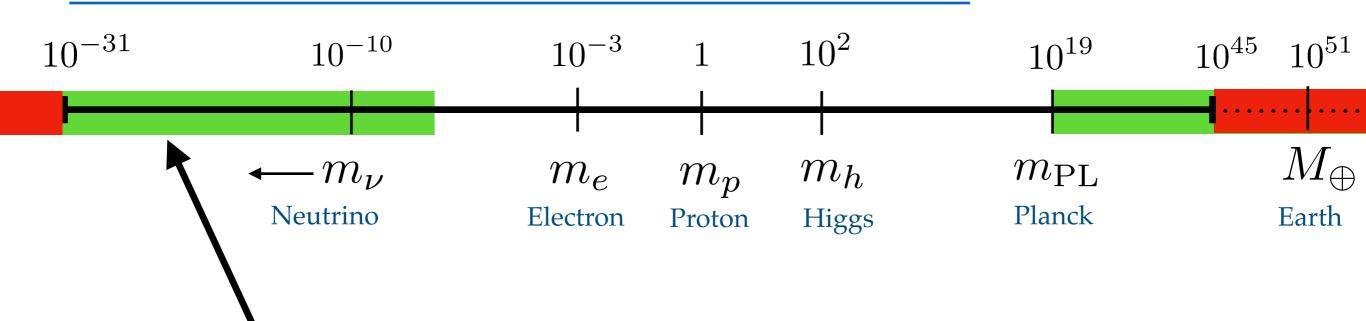
Electron Neutrino Constraints

Mu/Tau Neutrino Variation

Huge Range of Possible DM masses

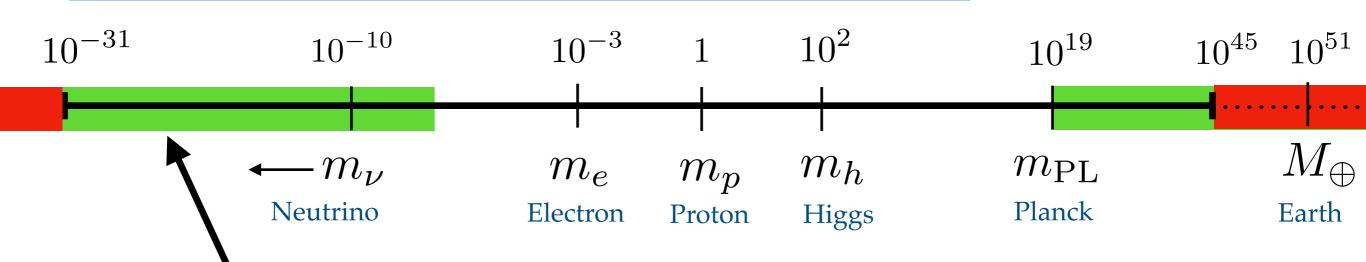


Huge Range of Possible DM masses



Must be bosonic, feebly coupled (can't thermalize w/SM)

Huge Range of Possible DM masses



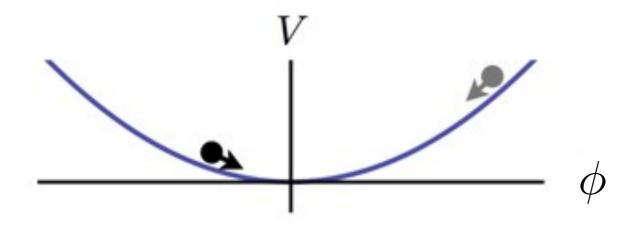
Must be bosonic, feebly coupled (can't thermalize w/SM)

de-Broglie wavelength
$$\lambda_{\phi} = \frac{1}{m_{\phi}v_{\phi}} \approx 200 \,\mathrm{km} \left(\frac{\mathrm{neV}}{m_{\phi}}\right) \left(\frac{10^{-3}}{v_{\phi}}\right)$$

exceeds interparticle spacing ——→ classical field

Scalar Field Cosmological Evolution

Early universe misalignment - original field value set by initial conditions



$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

Equation of motion

$$\phi(\vec{r},t) = \frac{\sqrt{2\rho_{\phi}(t)}}{m_{\phi}} \cos[m_{\phi}(t+\vec{v}_{\phi}\cdot\vec{r}) + \varphi(\vec{r})]$$

Begins oscillation @ horizon crossing $m_{\phi} \sim H$

Redshifts like non relativistic matter

$$\rho_{\phi} \sim m_{\phi}^2 \phi^2 \propto a^{-3}$$

Neutrino-DM Coupling

L = 2 scalar DM induces Majorana mass for right handed neutrinos

$$\mathcal{L} \supset y_{\nu} H\ell N + \frac{y_{\phi}}{2} \phi NN + h.c.$$

Post EWSB: static Dirac mass and dynamical Majorana mass

$$m_D = \frac{y_\nu v}{\sqrt{2}} \quad , \quad m_M = \frac{y_\phi}{2}\phi(t)$$

Neutrino-DM Coupling

L = 2 scalar DM induces Majorana mass for right handed neutrinos

$$\mathcal{L} \supset y_{\nu} H\ell N + \frac{y_{\phi}}{2} \phi NN + h.c.$$

Post EWSB: static Dirac mass and dynamical Majorana mass

$$m_D = \frac{y_{\nu}v}{\sqrt{2}} , \quad m_M = \frac{y_{\phi}}{2}\phi(t)$$

Small Majorana mass = pseudo-Dirac fermion

$$m_{h,\ell}^2 = m_D^2 \pm m_D m_M \equiv m_\nu^2 \pm \frac{1}{2} \delta m^2$$

DM density dependent splitting between heavy/light eigenstates

Active and sterile states (one pair per generation)

$$|\nu_e\rangle = \frac{1}{\sqrt{2}} (|\nu_h\rangle + |\nu_\ell\rangle)$$
$$|\nu_s\rangle = \frac{1}{\sqrt{2}} (|\nu_h\rangle - |\nu_\ell\rangle)$$

Near maximal mixing

$$\tan\left(2\theta\right) = \frac{2m_D}{m_M} \gg 1$$

Active and sterile states (one pair per generation)

$$|\nu_e\rangle = \frac{1}{\sqrt{2}} (|\nu_h\rangle + |\nu_\ell\rangle)$$
 Near maximal mixing
$$|\nu_s\rangle = \frac{1}{\sqrt{2}} (|\nu_h\rangle - |\nu_\ell\rangle)$$

$$\tan(2\theta) = \frac{2m_D}{m_M} \gg 1$$

Neutrino oscillations between active/sterile $\nu_a \rightarrow \nu_s$

Survival prob
$$P_{ee}(t) = |\langle \nu(t) | \nu_e \rangle|^2 = \cos^2 \left(\frac{1}{4E_{\nu}} \int_0^t dt' \delta m^2(t') \right)$$

Analogy with 2-flavor oscillation in more familiar constant-mass case

$$P(\nu_a \to \nu_s) = \sin^2(2\theta) \sin^2\left(\frac{\delta m^2 L}{4E_\nu}\right)$$

Density dependent active-sterile oscillation

$$1 - P_{ee} = \sin^2 \left\{ \frac{m_D}{2E_\nu} \frac{y_\phi \sqrt{2\rho_\phi}}{m_\phi^2} \left(\sin\left[m_\phi t + \varphi\right] - \sin\varphi \right) \right\}$$

Defines effective mass for comparison with reported limits

$$\delta m_{\rm eff}^2 \equiv \frac{2y_{\phi}m_D}{m_{\phi}}\sqrt{2\rho_{\phi}}$$

Model Description

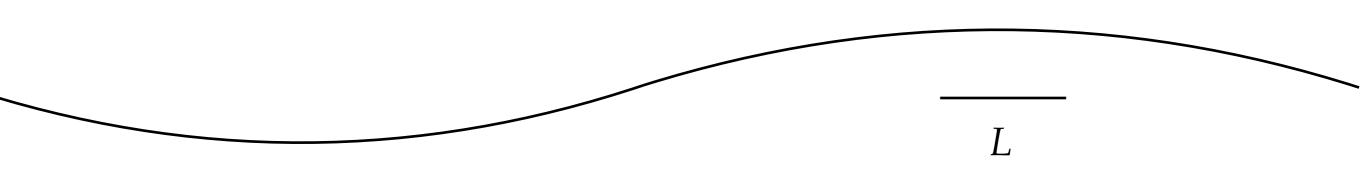
Oscillations Regimes

Electron Neutrino Constraints

Mu/Tau Neutrino Constraints

Constant ϕ : $m_{\phi}L \lesssim 1$

Neutrino encounters same offset phase across full trajectory



Constant ϕ : $m_{\phi}L \lesssim 1$

Neutrino encounters same offset phase across full trajectory

$$1 - P_{ee} \approx \sin^2 \left(\frac{L}{4E_{\nu}} \frac{2y_{\phi}m_D}{m_{\phi}} \sqrt{2\rho_{\phi}} \cos \varphi \right)$$

. **_**

Constant ϕ : $m_{\phi}L \lesssim 1$

Neutrino encounters same offset phase across full trajectory

$$1 - P_{ee} \approx \sin^2 \left(\frac{L}{4E_{\nu}} \frac{2y_{\phi}m_D}{m_{\phi}} \sqrt{2\rho_{\phi}} \cos \varphi \right)$$

Nontrivial effect when argument is order-one

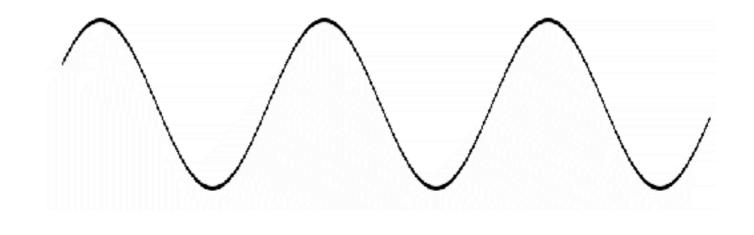
$$\delta m_{\text{eff}}^2 \equiv \frac{2y_{\phi}m_D}{m_{\phi}}\sqrt{2\rho_{\phi}} \quad \longrightarrow \quad y_{\phi} < \frac{m_{\phi}}{2m_D}\frac{\delta m_{\text{lim}}^2}{\sqrt{2\rho_{\phi}}},$$

Combination behaves like an effective mass-squared difference Can be matched with existing limits on pseudo-dirac neutrinos

Oscillations Regimes

Modulating ϕ : $(m_{\phi}v_{\phi}L < 1 \ll m_{\phi}L)$

Neutrino encounters many cycles of scalar modulation ... But all in the **same phase** domain



L

Modulating ϕ : $(m_{\phi}v_{\phi}L < 1 \ll m_{\phi}L)$

Neutrino encounters many cycles of scalar modulation ... But all in the **same phase** domain

Survival probability is time averaged along trajectory

$$\langle 1 - P_{ee} \rangle \approx \sin^2 \left(\frac{y_{\phi} m_D}{2E_{\nu} m_{\phi}^2} \sqrt{2\rho_{\phi}} \right)$$

Modulating
$$\phi$$
: $(m_{\phi}v_{\phi}L < 1 \ll m_{\phi}L)$

Neutrino encounters many cycles of scalar modulation ... But all in the **same phase** domain

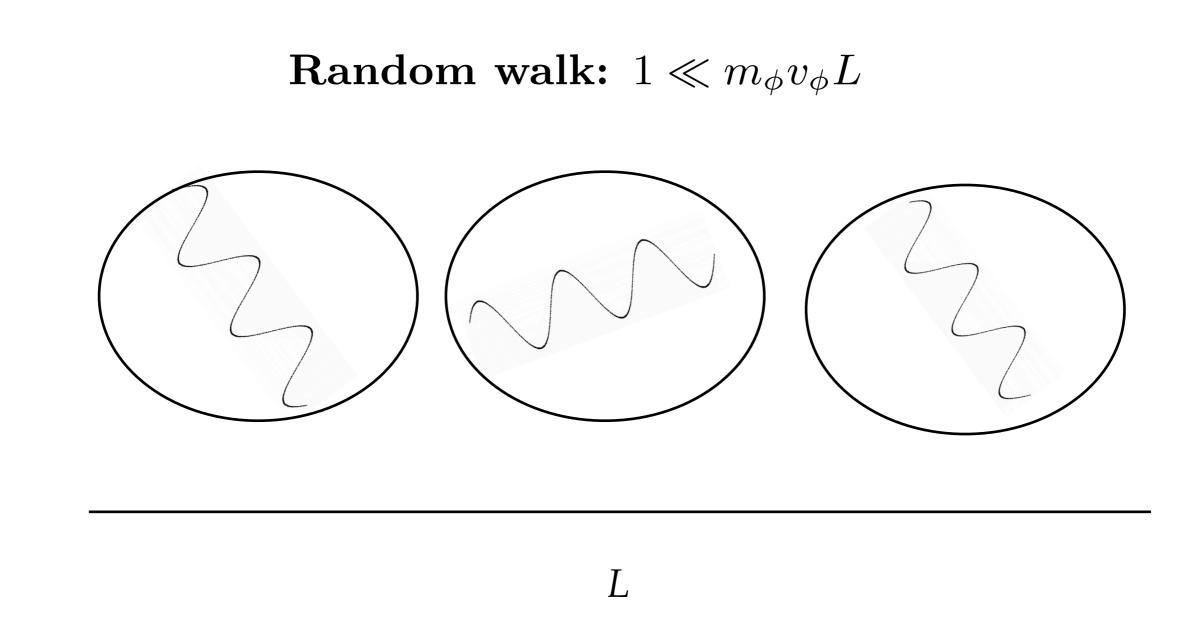
Survival probability is time averaged along trajectory

$$\langle 1 - P_{ee} \rangle \approx \sin^2 \left(\frac{y_{\phi} m_D}{2E_{\nu} m_{\phi}^2} \sqrt{2\rho_{\phi}} \right)$$

Demand order one argument for nontrivial active-sterile oscillation

$$y_{\phi}^{\lim} = \frac{\delta m_{\lim}^2 m_{\phi}^2 L}{2m_D \sqrt{2\rho_{\phi}}}$$

Oscillations Regimes



Neutrino encounters many different scalar domains

— random walk across phase variation

Random walk: $1 \ll m_{\phi} v_{\phi} L$

Effective phase along trajectory $\varphi_{\rm eff} \sim \sqrt{m_{\phi} v_{\phi} L}$

Random walk: $1 \ll m_{\phi} v_{\phi} L$

Effective phase along trajectory $\varphi_{\rm eff} \sim \sqrt{m_{\phi} v_{\phi} L}$

Path averaged survival probability

$$\langle 1 - P_{ee} \rangle \approx \sin^2 \left(\frac{y_{\phi} m_D \sqrt{2\rho_{\phi} v_{\phi} L}}{2E_{\nu} m_{\phi}^{3/2}} \right)$$

Demand order one argument for nontrivial effect

$$y_{\phi}^{\rm lim} = \frac{\delta m_{\rm lim}^2}{m_D} \sqrt{\frac{m_{\phi}^3 L}{2\rho_{\phi} v_{\phi}}}.$$

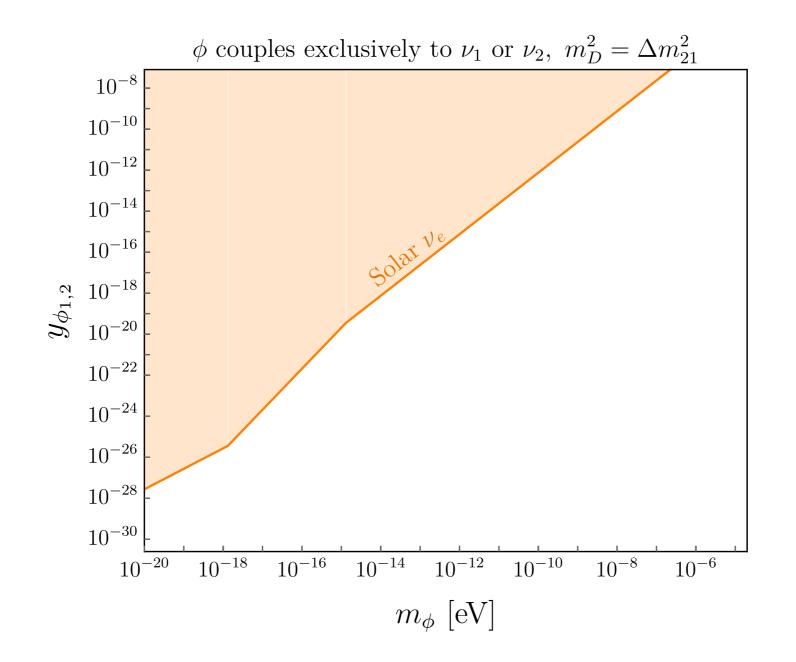
Model Description

Oscillations Regimes

Electron Neutrino Constraints

Mu/Tau Neutrino Constraints

 $\nu_e \rightarrow \nu_s$ oscillations on baseline $L = 1.5 \times 10^8$ km



Impose limit based on $\delta m_{
m lim}^2 < 10^{-12} \, {\rm eV}^2$ de Gouvea, Huang, Jenkins 0906.1611

 $\nu_e \rightarrow \nu_s$ oscillations **before** neutrino decoupling add to Neff Faster expansion rate \longrightarrow less primordial helium

 $\nu_e \rightarrow \nu_s$ oscillations after neutrino decoupling reduce ν_e earlier n/p freeze out \longrightarrow less primordial helium

BBN/CMB Electron Neutrino Oscillations

Dodelson Widrow sterile neutrino production

Solve for ratio of momentum moments

$$r_{\beta} \equiv \frac{\langle p^{\beta} \rangle_s}{\langle p^{\beta} \rangle_a}$$

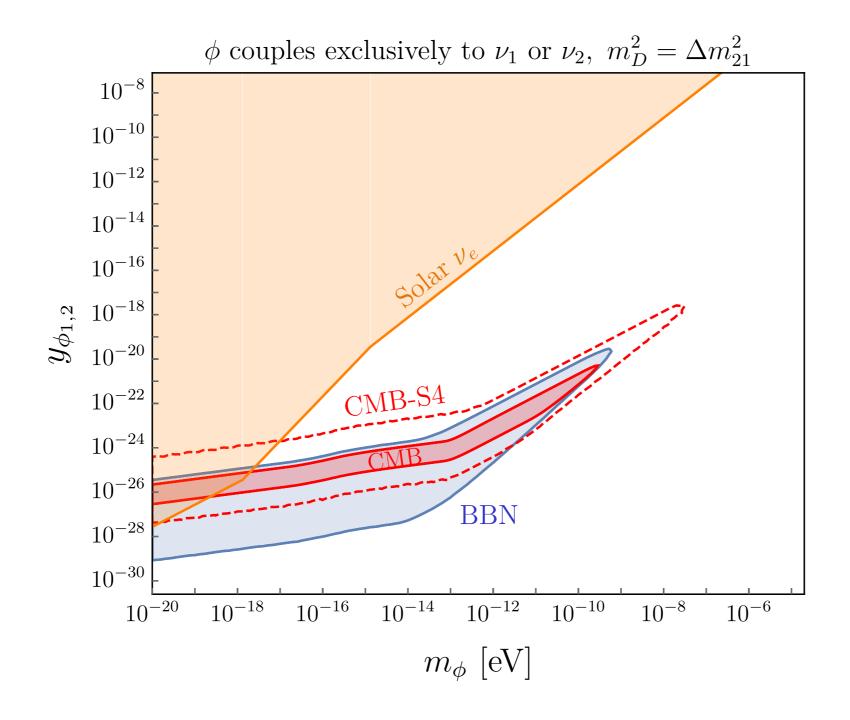
$$\frac{dr_{\beta}}{dT} = -\frac{1}{2HT\langle p^{\beta}\rangle_a} \int \frac{d^3p}{(2\pi)^3} \frac{p^{\beta}\Gamma\sin^2(2\theta_M)}{e^{p/T}+1}$$

Vacuum mixing angle $\theta_0 = \tan^{-1} \left(\frac{y_{\phi} \sqrt{2\rho_{\phi}}}{m_D m_{\phi}} \right)$ Effective mixing angle in vacuum

$$\sin^{2}(2\theta_{M}) = \frac{\sin^{2}(2\theta_{0})}{\left[\cos(2\theta_{0}) - 2pV_{\text{eff}}/\Delta m^{2}\right]^{2} + \sin^{2}(2\theta_{0})}$$

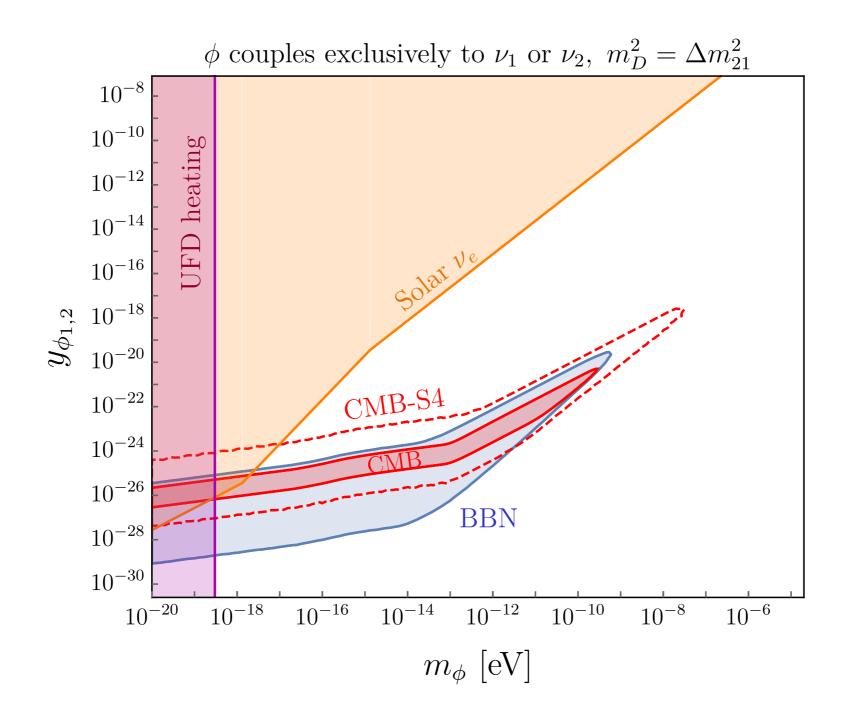
Dodelson, Widrow 9303287 Dolgov, Villante 0308083

BBN/CMB Electron Neutrino Oscillations



Effective mixing angle in vacuum

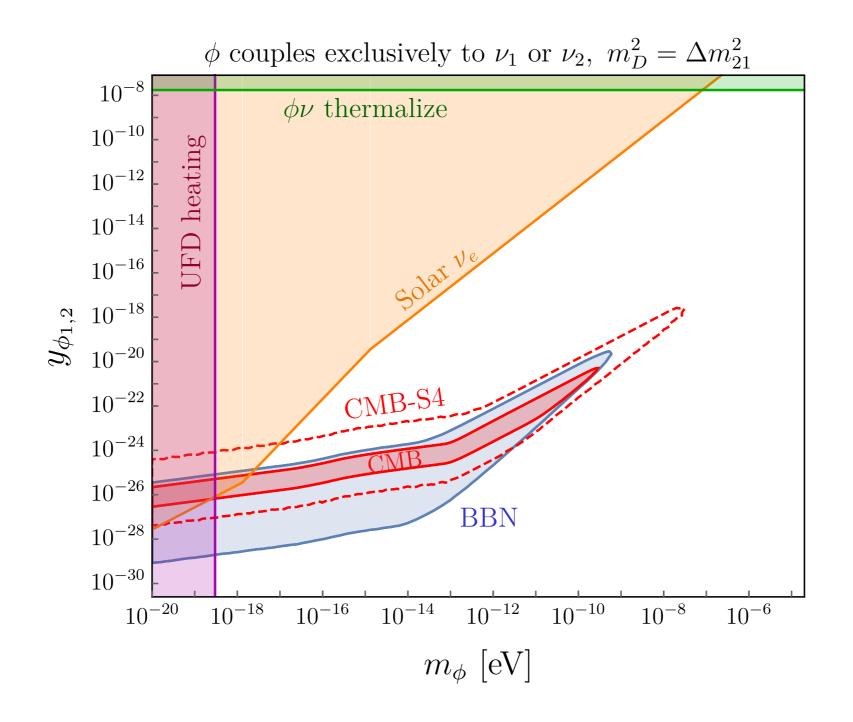
Fuzzy Dark Matter Bounds



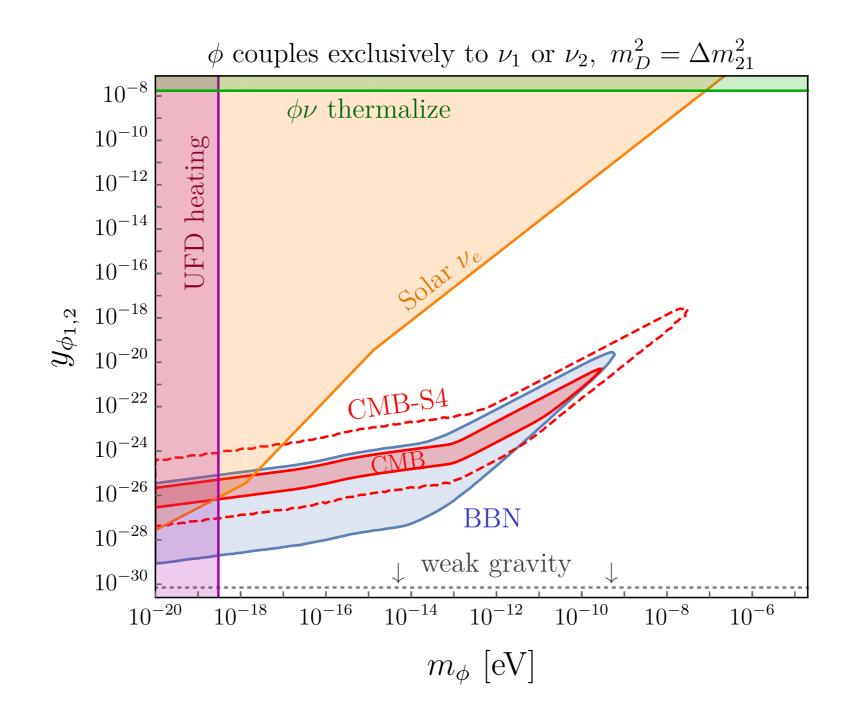
Potential fluctuations in ultra faint dwarfs affect velocity dispersion of visible stars

Hu, Barnana, Gruzinov 0003365 Dalal, Kravtsov, 2203.05750

Thermalization w/ SM Plasma



Compare to Gravity between Neutrinos



Low scalar mass bounds comparable to gravity between neutrinos

Model Description

Oscillations Regimes

Electron Neutrino Constraints

Mu/Tau Neutrino Variation

BBN/CMB simpler No electron neutrino depletion after decoupling Dolgov, Villante 0308083 **BBN/CMB simpler**

No electron neutrino depletion after decoupling Dolgov, Villante 0308083

Atmospheric oscillations beat solar

Deficit of muon neutrinos

de Gouvea, Huang, Jenkins 0906.1611

BBN/CMB simpler

No electron neutrino depletion after decoupling Dolgov, Villante 0308083

Atmospheric oscillations beat solar

Deficit of muon neutrinos

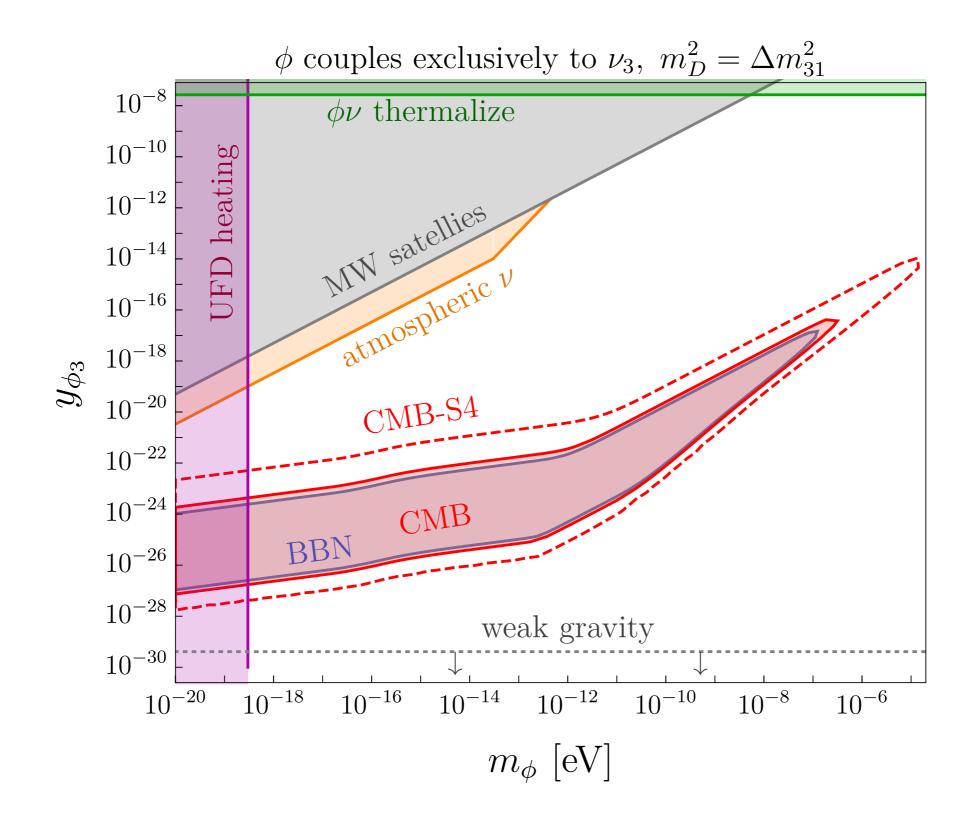
de Gouvea, Huang, Jenkins 0906.1611

Structure formation

Scalar must redshift like matter after $z \sim 10^6$ Quadratic term must dominate in potential Bound from Milky Way satellites

Das, Nadler 2010.01137

Mu/Tau Neutrino Oscillations



Ultralight DM induced Majorana mass —> pseudo-Dirac neutrinos

Active/sterile mass splitting time/density dependent

Strong bounds from lab/astro/cosmo

Solar/atmospheric oscillations Milky Way satellites BBN/CMB/Neff Ultra Faint Dwarfs