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If ultralight (⌧ eV), bosonic dark matter couples to right handed neutrinos, active neutrino masses
and mixing angles depend on the ambient dark matter density. When the neutrino Majorana mass,
induced by the dark matter background, is small compared to the Dirac mass, neutrinos are “pseudo-
Dirac” fermions that undergo oscillations between nearly degenerate active and sterile states.

We present a complete cosmological history for such a scenario and find severe limits from a variety
of terrestrial and cosmological observables. For scalar masses in the “fuzzy” dark matter regime
(⇠ 10�20 eV), these limits exclude couplings of order 10�30, corresponding to Yukawa interactions
comparable to the gravitational force between neutrinos and surpassing equivalent limits on time
variation in scalar-induced electron and proton couplings.

I. INTRODUCTION

Ultralight (⌧ eV) bosonic dark matter (DM) � is char-
acterized by a macroscopic de-Broglie wavelength

�� =
1

m�v�
⇡ 200 km

✓
neV

m�

◆✓
10�3

v�

◆
, (1)

which exceeds the inter-particle separation, where v� is
the field veloctiy. If � is misaligned from the minimum of
quadratic potential, it oscillates as a classical field about
this minimum according to

�(~r, t) =

p
2⇢�(t)

m�

cos[m�(t+ ~v� · ~r ) + '(~r )] , (2)

and the corresponding energy density redshifts like non-
relativistic matter ⇢� / a

�3, where a is the cosmic scale
factor and ' is a possible phase. This phase may encode
additional information about spatial variation – e.g. dif-
ferent � domains arising from cosmological initial condi-
tions1 or the incoherent virialization in the Galaxy lead-
ing to variation on the scale of ��.

If � couples to Standard Model (SM) particles, their
masses, spins, and coupling constants may inherit time
dependence from Eq. (2). In the context of charged SM
particles, there are many searches for such phenomena,
which typically place very strong limits on the �-SM in-
teraction strength (see Ref. [1] for a review). By con-
trast, there are relatively few bounds on DM induced
time dependence in the neutrino sector [2–15] and the

⇤
abhish@fnal.gov

†
krnjaicg@fnal.gov

‡
pmachado@fnal.gov

§
hramani@stanford.edu

1
e.g. due to oscillation starting at slightly di↵erent times in

di↵erent Hubble patches when the field becomes dynamical at

H ⇠ m�.

corresponding limits constrain comparatively large inter-
action strengths primarily via flavor oscillations.
In this paper we introduce the possibility that an ul-

tralight DM candidate � induces a time dependent Ma-
jorana mass for right-handed neutrinos

mM =
y�

2
�(t), (3)

where y� is a coupling constant and the time dependence
arises from Eq. (2). When this mass is small compared to
the neutrino Dirac mass mD, the mass eigenstates form
a pair of pseudo-Dirac fermions; one “active” ⌫a and one
“sterile” ⌫s (per generation). These states oscillate into
each other with a characteristic probability governed by
their squared mass di↵erence �m

2 [16]

P (⌫a ! ⌫s) = sin2(2✓) sin2
✓
�m

2
L

4E⌫

◆
, (4)

where L is the baseline, E⌫ is the energy of the prop-
agating neutrino, and ✓ ⇡ ⇡/4 is the mixing angle,
which is near maximal in the pseudo-Dirac limit where
mM ⌧ mD.
The Majorana mass governing �m

2 in Eq. (4) is time
dependent, so the oscillation rate becomes sensitive to
the dark matter density and to its cosmic evolution. This
dependence can impact various terrestrial and cosmologi-
cal observables. In this work we extract resultant bounds
and impose extremely strong limits on the induced Ma-
jorana mass; depending on the value of m� we find some
limits on the coupling y� corresponding to a � mediated
Yukawa force comparable to that of gravity.
This letter is organized as follows: in section II we

present our theoretical framework, in section III we
delineate the qualitatively di↵erent neutrino oscillation
regimes that � can induce, in section IV we compute the
terrestrial bounds, in section V we determine the cosmo-
logical bounds on this scenario, and in VI we make some
concluding remarks.
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and mixing angles depend on the ambient dark matter density. When the neutrino Majorana mass,
induced by the dark matter background, is small compared to the Dirac mass, neutrinos are “pseudo-
Dirac” fermions that undergo oscillations between nearly degenerate active and sterile states.

We present a complete cosmological history for such a scenario and find severe limits from a variety
of terrestrial and cosmological observables. For scalar masses in the “fuzzy” dark matter regime
(⇠ 10�20 eV), these limits exclude couplings of order 10�30, corresponding to Yukawa interactions
comparable to the gravitational force between neutrinos and surpassing equivalent limits on time
variation in scalar-induced electron and proton couplings.

I. INTRODUCTION
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the field veloctiy. If � is misaligned from the minimum of
quadratic potential, it oscillates as a classical field about
this minimum according to

�(~r, t) =

p
2⇢�(t)
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cos[m�(t+ ~v� · ~r ) + '(~r )] , (2)

and the corresponding energy density redshifts like non-
relativistic matter ⇢� / a

�3, where a is the cosmic scale
factor and ' is a possible phase. This phase may encode
additional information about spatial variation – e.g. dif-
ferent � domains arising from cosmological initial condi-
tions1 or the incoherent virialization in the Galaxy lead-
ing to variation on the scale of ��.

If � couples to Standard Model (SM) particles, their
masses, spins, and coupling constants may inherit time
dependence from Eq. (2). In the context of charged SM
particles, there are many searches for such phenomena,
which typically place very strong limits on the �-SM in-
teraction strength (see Ref. [1] for a review). By con-
trast, there are relatively few bounds on DM induced
time dependence in the neutrino sector [2–15] and the
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corresponding limits constrain comparatively large inter-
action strengths primarily via flavor oscillations.
In this paper we introduce the possibility that an ul-

tralight DM candidate � induces a time dependent Ma-
jorana mass for right-handed neutrinos

mM =
y�

2
�(t), (3)

where y� is a coupling constant and the time dependence
arises from Eq. (2). When this mass is small compared to
the neutrino Dirac mass mD, the mass eigenstates form
a pair of pseudo-Dirac fermions; one “active” ⌫a and one
“sterile” ⌫s (per generation). These states oscillate into
each other with a characteristic probability governed by
their squared mass di↵erence �m

2 [16]

P (⌫a ! ⌫s) = sin2(2✓) sin2
✓
�m

2
L

4E⌫

◆
, (4)

where L is the baseline, E⌫ is the energy of the prop-
agating neutrino, and ✓ ⇡ ⇡/4 is the mixing angle,
which is near maximal in the pseudo-Dirac limit where
mM ⌧ mD.
The Majorana mass governing �m

2 in Eq. (4) is time
dependent, so the oscillation rate becomes sensitive to
the dark matter density and to its cosmic evolution. This
dependence can impact various terrestrial and cosmologi-
cal observables. In this work we extract resultant bounds
and impose extremely strong limits on the induced Ma-
jorana mass; depending on the value of m� we find some
limits on the coupling y� corresponding to a � mediated
Yukawa force comparable to that of gravity.
This letter is organized as follows: in section II we

present our theoretical framework, in section III we
delineate the qualitatively di↵erent neutrino oscillation
regimes that � can induce, in section IV we compute the
terrestrial bounds, in section V we determine the cosmo-
logical bounds on this scenario, and in VI we make some
concluding remarks.
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Neutrino-DM Coupling

2

II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates

m
2
h,`

= m
2
D
±mDmM ⌘ m

2
⌫
±

1
2�m

2
, (7)

and we define �m
2
⌘ y�mD

p
2⇢�/m�, where

�m
2
⇡ 2⇥10�15eV2

⇣
y�

10�10

⌘✓10�15eV

m�

◆⇣
mD

0.1 eV

⌘
, (8)

for the splitting between Weyl fermions as opposed to the
usual �m

2
ij
measured in oscillation experiments; here we

have taken the local density to be ⇢
�
�

= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as

|⌫ei =
1
p
2

�
|⌫hi+ |⌫`i

�
, (10)

|⌫si =
1
p
2

�
|⌫hi � |⌫`i

�
. (11)

The time evolution of a ⌫e state is given by

U(t)|⌫ei =
1
p
2


exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
1(t

0)

◆
|⌫1i

+ exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
2(t

0)

◆
|⌫2i

�
, (12)

which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2

✓
1

4E⌫

Z
t

0
dt

0
�m

2(t0)

◆
. (13)

Using Eqs. (2) and (6) we obtain

1

2

Z
t

0
dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,

where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
mD

2E⌫

y�

p
2⇢�

m
2
�

✓
sin [m�t+ ']� sin'

◆)
, (14)

where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD

4⇡
⇠ 10�18 eV

⇣
y�

10�15

⌘⇣
mD

10meV

⌘
, (15)

from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH

†
H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV

models where H and � are localized on di↵erent branes in a

higher dimensional spacetime.
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Higgs doublet, ` is the SM lepton doublet, and N is a
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the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.
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there is only one generation of ` and N . For simplicity,
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neutrino. In the broken electroweak phase, the first term
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term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates

m
2
h,`

= m
2
D
±mDmM ⌘ m

2
⌫
±

1
2�m

2
, (7)

and we define �m
2
⌘ y�mD

p
2⇢�/m�, where

�m
2
⇡ 2⇥10�15eV2

⇣
y�

10�10

⌘✓10�15eV

m�

◆⇣
mD

0.1 eV

⌘
, (8)

for the splitting between Weyl fermions as opposed to the
usual �m

2
ij
measured in oscillation experiments; here we

have taken the local density to be ⇢
�
�

= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as

|⌫ei =
1
p
2

�
|⌫hi+ |⌫`i

�
, (10)

|⌫si =
1
p
2

�
|⌫hi � |⌫`i

�
. (11)

The time evolution of a ⌫e state is given by

U(t)|⌫ei =
1
p
2


exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
1(t

0)

◆
|⌫1i

+ exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
2(t

0)

◆
|⌫2i

�
, (12)

which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2

✓
1

4E⌫

Z
t

0
dt

0
�m

2(t0)

◆
. (13)

Using Eqs. (2) and (6) we obtain

1

2

Z
t

0
dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,

where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
mD

2E⌫

y�

p
2⇢�

m
2
�

✓
sin [m�t+ ']� sin'

◆)
, (14)

where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD

4⇡
⇠ 10�18 eV

⇣
y�

10�15

⌘⇣
mD

10meV

⌘
, (15)

from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH

†
H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV

models where H and � are localized on di↵erent branes in a

higher dimensional spacetime.

Post EWSB: static Dirac mass and dynamical Majorana mass



Neutrino-DM Coupling

2

II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates

m
2
h,`

= m
2
D
±mDmM ⌘ m

2
⌫
±

1
2�m

2
, (7)

and we define �m
2
⌘ y�mD

p
2⇢�/m�, where

�m
2
⇡ 2⇥10�15eV2

⇣
y�

10�10

⌘✓10�15eV

m�

◆⇣
mD

0.1 eV

⌘
, (8)

for the splitting between Weyl fermions as opposed to the
usual �m

2
ij
measured in oscillation experiments; here we

have taken the local density to be ⇢
�
�

= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as

|⌫ei =
1
p
2

�
|⌫hi+ |⌫`i

�
, (10)

|⌫si =
1
p
2

�
|⌫hi � |⌫`i

�
. (11)

The time evolution of a ⌫e state is given by

U(t)|⌫ei =
1
p
2


exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
1(t

0)

◆
|⌫1i

+ exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
2(t

0)

◆
|⌫2i

�
, (12)

which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2

✓
1

4E⌫

Z
t

0
dt

0
�m

2(t0)

◆
. (13)

Using Eqs. (2) and (6) we obtain

1

2

Z
t

0
dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,

where we have absorbed the v� dependence in Eq. (2)
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propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
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while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2
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The operator kH
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II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have
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, mM =
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2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH
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H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV
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higher dimensional spacetime.

Post EWSB: static Dirac mass and dynamical Majorana mass

Small Majorana mass = pseudo-Dirac fermion
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II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
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2
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for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
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for the splitting between Weyl fermions as opposed to the
usual �m
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measured in oscillation experiments; here we

have taken the local density to be ⇢
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= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as
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which yields a ⌫e ! ⌫e survival probability
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
mD
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD
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⇠ 10�18 eV
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10�15
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH
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H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV
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DM density dependent splitting between heavy/light eigenstates
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II. ULTRALIGHT DARK MATTER AND
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We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates
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for the splitting between Weyl fermions as opposed to the
usual �m

2
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measured in oscillation experiments; here we

have taken the local density to be ⇢
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= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as

1�Pee = sin2
(
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2

2
The operator kH

†
H|�|2 is also allowed by all symmetries and

can induce a large correction to m� if the coe�cient is not sup-

pressed. Exponential k ⌧ 1 suppression can be achieved in UV

models where H and � are localized on di↵erent branes in a

higher dimensional spacetime.
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II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
y�

2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates
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for the splitting between Weyl fermions as opposed to the
usual �m
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measured in oscillation experiments; here we

have taken the local density to be ⇢
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= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
resulting electron-neutrino disappearance probability can
be written as
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order

�m� ⇠
y�mD

4⇡
⇠ 10�18 eV

⇣
y�

10�15

⌘⇣
mD

10meV

⌘
, (15)

from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2
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II. ULTRALIGHT DARK MATTER AND
PSEUDO-DIRAC NEUTRINOS

We consider a scalar DM candidate � with lepton num-
ber 2 and a cosmic abundance due to misalignment. In
Weyl fermion notation, the Lagrangian in this scenario
contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)

where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have

mD =
y⌫v
p
2

, mM =
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2
�(t) , (6)

for the Dirac and Majorana contributions, respectively,
where v = 246 GeV is the Higgs vacuum expectation
value. When mM ⌧ mD, we obtain two nearly degener-
ate neutrino mass-squared eigenstates

m
2
h,`

= m
2
D
±mDmM ⌘ m

2
⌫
±

1
2�m

2
, (7)

and we define �m
2
⌘ y�mD

p
2⇢�/m�, where

�m
2
⇡ 2⇥10�15eV2

⇣
y�

10�10

⌘✓10�15eV

m�

◆⇣
mD

0.1 eV

⌘
, (8)

for the splitting between Weyl fermions as opposed to the
usual �m

2
ij
measured in oscillation experiments; here we

have taken the local density to be ⇢
�
�

= 0.4 GeV/cm3

[19]. The active-sterile mixing angle in this case is

tan (2✓) =
2mD

mM

� 1 , (9)

which is nearly maximal, ✓ ⇡ ⇡/4 in our full parameter
space of interest.

The diagonalization of the mass terms in Eq. (6) is
obtained by defining the flavor fields in terms of the mass
eigenstates approximately as

|⌫ei =
1
p
2

�
|⌫hi+ |⌫`i

�
, (10)

|⌫si =
1
p
2

�
|⌫hi � |⌫`i

�
. (11)

The time evolution of a ⌫e state is given by

U(t)|⌫ei =
1
p
2


exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
1(t

0)

◆
|⌫1i

+ exp

✓
�

i

2E⌫

Z
t

0
dt

0
m

2
2(t

0)

◆
|⌫2i

�
, (12)

which yields a ⌫e ! ⌫e survival probability

Pee(t) = |h⌫(t)|⌫ei|
2 = cos2

✓
1

4E⌫

Z
t

0
dt

0
�m

2(t0)

◆
. (13)

Using Eqs. (2) and (6) we obtain

1

2

Z
t

0
dt

0
�m

2(t0) =
y�mD

m�

p
2⇢�

Z
t

0
dt

0 cos (m�t
0 + ') ,
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
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the ultralight scalar mass, assuming no � couplings to
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contains

L � y⌫H`N +
y�

2
�NN + h.c. , (5)
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will see next, the presence of a feeble interaction between
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it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
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term in Eq. (5) generates a Majorana mass for N , so we
have
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for the Dirac and Majorana contributions, respectively,
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2
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ber 2 and a cosmic abundance due to misalignment. In
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contains
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where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
SM neutral fermion, i.e. a right-handed neutrino. As we
will see next, the presence of a feeble interaction between
the scalar DM and the right-handed neutrino can have
dramatic e↵ects in neutrino oscillation phenomenology.

To understand the impact of � on neutrino oscillations,
it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have
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for the Dirac and Majorana contributions, respectively,
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
emitted at t = 0 and observed at some later time t, the
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be written as
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where we have treated the phase ' as a constant over the
propagation time.
Generalization for more neutrino flavors is straightfor-

ward and can be derived following similar steps as those
taken in Ref. [20]. Moreover, to simplify the discussion on
the constraints and because the electron-neutrino admix-
ture in ⌫3 is small (|Ue3| ⌧ 1), when � couples to ⌫1 or
⌫2 we will only consider nonstandard ⌫e disappearance,
while when � couples to ⌫3 we will only consider non-
standard ⌫µ,⌧ disappearance; in both regimes, we treat
the active-sterile oscillation in a two-flavor (active-sterile)
framework.
As written in Eq. (2), the phase ' need not be constant

over the full neutrino trajectory. Indeed, in the Galaxy,
virialization will disrupt any constant phase value down
to coherence patches of order the de-Broglie wavelength
in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
Finally, we note that our scalar mass is not protected

by any symmetry, so it will be sensitive to irreducible
one-loop corrections of order
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2
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contains
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where y⌫ is the neutrino Yukawa coupling, H is the SM
Higgs doublet, ` is the SM lepton doublet, and N is a
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it is instructive to describe the “1+1” scenario, in which
there is only one generation of ` and N . For simplicity,
assume that the active state here is an electron flavor
neutrino. In the broken electroweak phase, the first term
in Eq. (5) generates a Dirac mass of neutrinos. When
the � field is misaligned according to Eq. (2), the second
term in Eq. (5) generates a Majorana mass for N , so we
have
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where we have absorbed the v� dependence in Eq. (2)
into the definition of ' for brevity. Thus, for a neutrino
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where we have treated the phase ' as a constant over the
propagation time.
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virialization will disrupt any constant phase value down
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in Eq. (1). Thus, the full oscillation probability will de-
pend crucially on the relative size of the oscillation base-
line and this coherence scale.
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from the interactions in Eq. (5). Thus, for small y� in the
pseudo-Dirac limit, this contribution does not destabilize
the ultralight scalar mass, assuming no � couplings to
heavier states.2
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.

III. NEUTRINO OSCILLATION REGIMES

In what follows, we will consider three distinct regimes
for neutrino oscillations in the presence of the ultralight
scalar fields. These regimes arrive from the relation be-
tween the neutrino oscillation length and the modulation
frequency of � or the coherence length that defines the
overall phase '. Instead of performing a detailed fit of
experimental data, we will recast existing constraints on
pseudo-Dirac neutrinos from Ref. [21] on our parameters
of interest, y� andm�. As neutrinos are ultra-relativistic,
we identify t = L in Eq. (14).

A. Constant �: m�L . 1

In the low frequency m�L . 1 regime, the neutrino
encounters a constant phase ' domain over the course of
its propagation.

Expanding Eq. (14) around m�L ! 0 yields an oscil-
lation probability
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◆
. (16)

We can interpret this oscillation probability as follows.
Since the period of the field � is too long compared to
the neutrino time-of-flight, the pseudo-Dirac mass split-
ting induced by the field is constant for each neutrino.
Nevertheless, as an experiment collects data, the mass

splitting will evolve as the field � displays time modu-
lation. In practice, several neutrino experiments have a
high enough rate of events to observe time modulation
of oscillation probabilities with periods as short as 10
minutes, which would correspond to m� ⇠ 10�18 eV [3–
5, 12].
Since any small pseudo-Dirac mass splitting leads to

maximal mixing, time modulation of neutrino oscillation
probabilities due to � modulation would lead to large,
observable e↵ects on oscillation data.
Both constant and time dependent pseudo-Dirac mass

splittings would be ruled out by neutrino data if ob-
served, and can be used to set limits on the coupling
strength y� for a given m�. Since sterile neutrino os-
cillation constraints are typically reported as bounds on
�m

2, we can define an e↵ective mass-squared �m
2
e↵ by

equating the arguments of Eq. (4) and Eq. (16) to obtain
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2
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2y�mD
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p
2⇢� , (17)

assuming cos' ⇠ 1. Recasting pseudo-Dirac neutrino
limits on �m

2 in Eq. (17) allows to constrain

y� <
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2mD

�m
2
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2⇢�

, (18)

where we have identified �m
2
e↵ with the constrained value

�m
2
lim.
Note that, depending on context, ⇢� can either be the

cosmological DM density at a given cosmic era or the
present day local density.
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If ultralight (⌧ eV), bosonic dark matter couples to right handed neutrinos, active neutrino masses
and mixing angles depend on the ambient dark matter density. When the neutrino Majorana mass,
induced by the dark matter background, is small compared to the Dirac mass, neutrinos are “pseudo-
Dirac” fermions that undergo oscillations between nearly degenerate active and sterile states.

We present a complete cosmological history for such a scenario and find severe limits from a variety
of terrestrial and cosmological observables. For scalar masses in the “fuzzy” dark matter regime
(⇠ 10�20 eV), these limits exclude couplings of order 10�30, corresponding to Yukawa interactions
comparable to the gravitational force between neutrinos and surpassing equivalent limits on time
variation in scalar-induced electron and proton couplings.

I. INTRODUCTION

Ultralight (⌧ eV) bosonic dark matter (DM) � is char-
acterized by a macroscopic de-Broglie wavelength

�� =
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m�v�
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✓
neV

m�

◆✓
10�3

v�

◆
, (1)

which exceeds the inter-particle separation, where v� is
the field veloctiy. If � is misaligned from the minimum of
quadratic potential, it oscillates as a classical field about
this minimum according to

�(~r, t) =

p
2⇢�(t)

m�

cos[m�(t+ ~v� · ~r ) + '(~r )] , (2)

and the corresponding energy density redshifts like non-
relativistic matter ⇢� / a

�3, where a is the cosmic scale
factor and ' is a possible phase. This phase may encode
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ferent � domains arising from cosmological initial condi-
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ing to variation on the scale of ��.

If � couples to Standard Model (SM) particles, their
masses, spins, and coupling constants may inherit time
dependence from Eq. (2). In the context of charged SM
particles, there are many searches for such phenomena,
which typically place very strong limits on the �-SM in-
teraction strength (see Ref. [1] for a review). By con-
trast, there are relatively few bounds on DM induced
time dependence in the neutrino sector [2–15] and the
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e.g. due to oscillation starting at slightly di↵erent times in

di↵erent Hubble patches when the field becomes dynamical at

H ⇠ m�.

corresponding limits constrain comparatively large inter-
action strengths primarily via flavor oscillations.
In this paper we introduce the possibility that an ul-

tralight DM candidate � induces a time dependent Ma-
jorana mass for right-handed neutrinos

mM =
y�

2
�(t), (3)

where y� is a coupling constant and the time dependence
arises from Eq. (2). When this mass is small compared to
the neutrino Dirac mass mD, the mass eigenstates form
a pair of pseudo-Dirac fermions; one “active” ⌫a and one
“sterile” ⌫s (per generation). These states oscillate into
each other with a characteristic probability governed by
their squared mass di↵erence �m

2 [16]

P (⌫a ! ⌫s) = sin2(2✓) sin2
✓
�m

2
L

4E⌫

◆
, (4)

where L is the baseline, E⌫ is the energy of the prop-
agating neutrino, and ✓ ⇡ ⇡/4 is the mixing angle,
which is near maximal in the pseudo-Dirac limit where
mM ⌧ mD.
The Majorana mass governing �m

2 in Eq. (4) is time
dependent, so the oscillation rate becomes sensitive to
the dark matter density and to its cosmic evolution. This
dependence can impact various terrestrial and cosmologi-
cal observables. In this work we extract resultant bounds
and impose extremely strong limits on the induced Ma-
jorana mass; depending on the value of m� we find some
limits on the coupling y� corresponding to a � mediated
Yukawa force comparable to that of gravity.
This letter is organized as follows: in section II we

present our theoretical framework, in section III we
delineate the qualitatively di↵erent neutrino oscillation
regimes that � can induce, in section IV we compute the
terrestrial bounds, in section V we determine the cosmo-
logical bounds on this scenario, and in VI we make some
concluding remarks.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.

III. NEUTRINO OSCILLATION REGIMES

In what follows, we will consider three distinct regimes
for neutrino oscillations in the presence of the ultralight
scalar fields. These regimes arrive from the relation be-
tween the neutrino oscillation length and the modulation
frequency of � or the coherence length that defines the
overall phase '. Instead of performing a detailed fit of
experimental data, we will recast existing constraints on
pseudo-Dirac neutrinos from Ref. [21] on our parameters
of interest, y� andm�. As neutrinos are ultra-relativistic,
we identify t = L in Eq. (14).

A. Constant �: m�L . 1

In the low frequency m�L . 1 regime, the neutrino
encounters a constant phase ' domain over the course of
its propagation.

Expanding Eq. (14) around m�L ! 0 yields an oscil-
lation probability

1� Pee ⇡ sin2
✓

L

4E⌫

2y�mD

m�

p
2⇢� cos'

◆
. (16)

We can interpret this oscillation probability as follows.
Since the period of the field � is too long compared to
the neutrino time-of-flight, the pseudo-Dirac mass split-
ting induced by the field is constant for each neutrino.
Nevertheless, as an experiment collects data, the mass

splitting will evolve as the field � displays time modu-
lation. In practice, several neutrino experiments have a
high enough rate of events to observe time modulation
of oscillation probabilities with periods as short as 10
minutes, which would correspond to m� ⇠ 10�18 eV [3–
5, 12].
Since any small pseudo-Dirac mass splitting leads to

maximal mixing, time modulation of neutrino oscillation
probabilities due to � modulation would lead to large,
observable e↵ects on oscillation data.
Both constant and time dependent pseudo-Dirac mass

splittings would be ruled out by neutrino data if ob-
served, and can be used to set limits on the coupling
strength y� for a given m�. Since sterile neutrino os-
cillation constraints are typically reported as bounds on
�m

2, we can define an e↵ective mass-squared �m
2
e↵ by

equating the arguments of Eq. (4) and Eq. (16) to obtain

�m
2
e↵ ⌘

2y�mD

m�

p
2⇢� , (17)

assuming cos' ⇠ 1. Recasting pseudo-Dirac neutrino
limits on �m

2 in Eq. (17) allows to constrain

y� <
m�

2mD

�m
2
limp
2⇢�

, (18)

where we have identified �m
2
e↵ with the constrained value

�m
2
lim.
Note that, depending on context, ⇢� can either be the

cosmological DM density at a given cosmic era or the
present day local density.

L

Neutrino encounters same offset phase across full trajectory 
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation

h1� Peei ⇡ sin2
 

y�mD

2E⌫m
2
�

p
2⇢�

!
, (19)

where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain

y
lim
�

=
�m

2
limm

2
�
L

2mD

p
2⇢�

. (20)

C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s

2
12 + s

4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '

c
4
13(c

4
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4
12) + s

4
13 ' 0.55. These probabilities describe

well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
= �m

2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order

y
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give

y
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, for m� > 10�15 eV.(26)

These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have

Neutrino encounters many cycles of scalar modulation
… But all in the same phase domain
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain

y
lim
�

=
�m

2
limm

2
�
L

2mD

p
2⇢�

. (20)

C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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4
13 ' 0.55. These probabilities describe

well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
= �m

2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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, for m� < 10�18 eV. (24)

Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order

y
lim
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⇡ 3⇥ 10�26
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m�
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation

h1� Peei ⇡ sin2
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written

h1� Peei ⇡ sin2
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s

2
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '

c
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4
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4
12) + s

4
13 ' 0.55. These probabilities describe

well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order

y
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have

Survival probability is time averaged along trajectory
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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y�mD

2E⌫m
2
�

p
2⇢�

!
, (19)

where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order

y
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain

y
lim
�

=
�m

2
limm

2
�
L

2mD

p
2⇢�

. (20)

C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written

h1� Peei ⇡ sin2
 
y�mD

p
2⇢�v�L

2E⌫m
3/2
�

!
. (21)

The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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2
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[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s

2
12 + s

4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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4
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4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
= �m

2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give

y
lim
�

⇡ 2⇥ 10�20
⇣

m�

10�15 eV

⌘3/2
, for m� > 10�15 eV.(26)

These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order

y
lim
�

⇡ 3⇥ 10�26
⇣

m�

10�18eV

⌘1/2
, for m� < 10�15 eV. (25)

Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires

�m
2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢

�
�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads

y
lim
�

=
�m

2
lim

mD

s
m

3
�
L

2⇢�v�
. (22)

IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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with L = 1.5⇥ 108 km, which requires
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
13 ' 0.55. These probabilities describe

well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
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repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠
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m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
lim < 10�12 eV2
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
lim < 10�12 eV2
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give

y
lim
�

⇡ 2⇥ 10�20
⇣

m�

10�15 eV

⌘3/2
, for m� > 10�15 eV.(26)

These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have



Overview

Model Description

Oscillations Regimes

Electron Neutrino Constraints

Mu/Tau Neutrino Constraints



Solar Oscillations

4

B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
m�v�L, assuming random distribu-

tion of phases ' and the phase averaged probability can
be written
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The corresponding limit on the coupling reads
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c
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where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '

c
4
13(c

4
12 + s

4
12) + s

4
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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�
and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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2
lim < 10�12 eV2

, (23)

and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2
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2
21 = 7.4⇥ 10�5 eV2

[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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B. Modulating �: (m�v�L < 1 ⌧ m�L)

When the � modulating frequency is high, m�L � 1,
the accumulated phase due to propagation is su�cient
to induce many modulation cycles on � over the neu-
trino trajectory. However, as long as m�v�L . 1, the
neutrino time-of-flight is shorter than separation time of
� wave packets. A neutrino propagating in this regime
will encounter the same value of ' across its trajectory,
that is, the modulation of � throughtout the neutrino
trajectory is coherent. Without loss of generality, we can
set the initial condition ' = 0. The e↵ective oscillation
probability in this regime is given by a time-average of
Eq. (14) over the duration of propagation
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where we have assumed that ⇢� does not change appre-
ciably across the baseline. In this intermediate regime we
repeat the argument leading up to Eq. (18) and constrain
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C. Random walk: 1 ⌧ m�v�L

Finally, in the m�v�L � 1 regime, the neutrino time-
of-flight is longer than the wave packet separation of �, so
the neutrino traverses a random sample of � field patches,
each with a di↵erent phase '. Along this trajectory, there
are approximately m�v�L patches whose contributions
add incoherently, so the e↵ective phase can be approx-
imated by 'e↵ ⇠

p
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tion of phases ' and the phase averaged probability can
be written
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IV. TERRESTRIAL OBSERVABLES

We now consider various terrestrial bounds on pseudo-
Dirac neutrinos in the context of our scenario. Depending
on the values of y� and m�, a particular constraint can
apply in any of the three regimes outlined in Sec. III,
so the relationship between y� and m� will di↵er in each
case

A. Solar Neutrinos

For electron neutrinos, the pseudo-Dirac splitting
can be constrained by measurements of the solar neu-
trino flux. In the standard three neutrino oscillations
paradigm, 8B neutrinos undergo an adiabatic evolution
due to large matter e↵ects in the Sun [22]. This leads to
a survival probability P (⌫e ! ⌫e) ' c

4
13s

2
12 + s

4
13 ' 0.3,

where sij and cij are the sines and cosines of mixing angle
✓ij . Low energy solar neutrinos, on the other hand, are
not a↵ected by matter e↵ects, and thus P (⌫e ! ⌫e) '
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well experimental data [23–31]. This can be used to ex-
tract an order of magnitude bound on the splitting in our
scenario by demanding that this prediction is not a↵ected
by an order one amount. Here we use ⇢
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and v� ⇡ 10�3

with L = 1.5⇥ 108 km, which requires
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and can be translated into a bound on our model parame-
ters using the relations in Sec. III, where the appropriate
regime is determined by m�. Since solar neutrinos are es-
sentially almost pure ⌫2 or incoherent ⌫e, and ⌫e has but
a small admixture ⌫3 mass eigenstate, the correspond-
ing solar limit on the y� applies only to the right-handed
partners N1,2. Applying the solar limit from Eq. (23) to
the three regimes from Sec. IIIA, and assuming that the
Dirac mass of ⌫1 satisfies m2

D
= �m

2
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[32], we find the following constraints.
For m� . 10�18 eV, solar neutrinos are in the constant

� regime, so from Eq. (18), we find a limit
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Note that if m� . 10�24 eV, the period of � is larger
than 20 years, and the observation of pseudo-Dirac mass
splittings become dependent of the initial condition '.
For 10�18 eV . m� . 10�15 eV, we are in the modulating
� regime where Eq. (20) yields a limit of order
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Finally, form� & 10�15 eV, solar neutrinos will traverse a
random sample of phases ', corresponding to the random
walk regime, so the bound from Eq. (22) applies to give
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These results are plotted in the left panel of in Fig. 1,
which shows constraints on � coupled only to ⌫1 or ⌫2,
corresponding to ⌫e oscillations measurements.

B. Atmospheric neutrinos

Measurements of the atmospheric neutrinos can place
limits on the � coupling to ⌫3 since muon neutrinos have
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neutrinos are ultralight, the scattering rate scales as
� ⇠ n� / T

�1, up until T ⇠ mD corresponding to the
maximum rate relative to Hubble. Demanding that less
than 3.8% of the � population in the condensate is up-
scattered and becomes relativistic [41] at this tempera-
ture implies

y� .
✓
0.038

p
g?mD

mPl

◆1/4

⇡ 10�8

✓
10meV

mD

◆1/4

, (35)

where g? = 3.36. This bound is shown in Fig. 1 as the
green shaded region.

D. CMB/BBN

In this section, we investigate the e↵ects of the scalar
field in the early universe, specifically active to sterile os-
cillations, which increase the e↵ective number of neutrino
species, �Ne↵ .
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FIG. 1: Left: Parameter space for � coupled only to ⌫1 or ⌫2 mass eigenstates, which is predominantly constrained
⌫e oscillation bounds. Here we show bounds from CMB and BBN from Sec. V, Milky Way satellites from Sec. VB,
scalar thermalization with neutrinos from Sec. VC, solar neutrino oscillations from Sec. IVA, and model
independent limits on light DM from ultra faint dwarf (UFD) heating [17]. For points below the gray dotted line,
the � mediated force between right handed neutrinos is weaker than gravity, which is theoretically disfavored by the
weak gravity conjecture [18] Right: same as the left panel, only � now couples only to ⌫3, so the limits are driven
by ⌫µ,⌧ oscillations for which the solar bound is subdominant to the atmospheric bound described in Sec. IVB.

III. NEUTRINO OSCILLATION REGIMES

In what follows, we will consider three distinct regimes
for neutrino oscillations in the presence of the ultralight
scalar fields. These regimes arrive from the relation be-
tween the neutrino oscillation length and the modulation
frequency of � or the coherence length that defines the
overall phase '. Instead of performing a detailed fit of
experimental data, we will recast existing constraints on
pseudo-Dirac neutrinos from Ref. [21] on our parameters
of interest, y� andm�. As neutrinos are ultra-relativistic,
we identify t = L in Eq. (14).

A. Constant �: m�L . 1

In the low frequency m�L . 1 regime, the neutrino
encounters a constant phase ' domain over the course of
its propagation.

Expanding Eq. (14) around m�L ! 0 yields an oscil-
lation probability
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We can interpret this oscillation probability as follows.
Since the period of the field � is too long compared to
the neutrino time-of-flight, the pseudo-Dirac mass split-
ting induced by the field is constant for each neutrino.
Nevertheless, as an experiment collects data, the mass

splitting will evolve as the field � displays time modu-
lation. In practice, several neutrino experiments have a
high enough rate of events to observe time modulation
of oscillation probabilities with periods as short as 10
minutes, which would correspond to m� ⇠ 10�18 eV [3–
5, 12].
Since any small pseudo-Dirac mass splitting leads to

maximal mixing, time modulation of neutrino oscillation
probabilities due to � modulation would lead to large,
observable e↵ects on oscillation data.
Both constant and time dependent pseudo-Dirac mass

splittings would be ruled out by neutrino data if ob-
served, and can be used to set limits on the coupling
strength y� for a given m�. Since sterile neutrino os-
cillation constraints are typically reported as bounds on
�m

2, we can define an e↵ective mass-squared �m
2
e↵ by

equating the arguments of Eq. (4) and Eq. (16) to obtain
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assuming cos' ⇠ 1. Recasting pseudo-Dirac neutrino
limits on �m

2 in Eq. (17) allows to constrain
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where we have identified �m
2
e↵ with the constrained value

�m
2
lim.
Note that, depending on context, ⇢� can either be the

cosmological DM density at a given cosmic era or the
present day local density.
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