

ATLAS 実験オーバービュー + ATLAS 実験における消失飛跡を用いた 長寿命チャージーノの探索

早稲田大学 助手 加地 俊瑛 (D論執筆中) 28th ICEPP Symposium

ATLAS Overview

20/Feb/2022 28th ICEPP Symposium

28th ICEPP Symposium

20/Feb/2022

ビーム衝突点からほぼ全方位をカバーする円筒形の検出器.

20/Feb/2022

 $\eta = -\ln\tan(\theta/2)$

方向距離 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

ATLAS 検出器の構成と粒子識別

クォークやグルーオンは ジェット(粒子の束) として再構成する

ニュートリノや DM は 消失横運動量 E^{Tmiss} として観測する. ^{x-y 平面} E^{Tmiss} Jet

20/Feb/2022

トリガー

全事象を保存するにはリソースが足りないので, なるべくゴミだけの事象は落とし,興味深い事象は残す選別を行う. -> トリガー ここで落とした事象は一生見れないので,トリガーはとても重要.

物理解析グループ

20/Feb/2022

$$N_{\text{prod}} = \sigma \times \int \mathcal{L} dt$$

生成事象数 物理
@\s = X TeV 加速器 (積分ルミノシティ Y fb⁻¹ = 取得データ量)

$$N_{obs} = N_{prod} \times (Acceptance) \times (Efficiency)$$

観測事象数 トリガー・検出器 解析

LHC の運転スケジュールなど

<u>LHC</u>

Run1 (2010 ~ 2012)

- 5 fb⁻¹ @7TeV + 20 f<u>b⁻¹ @8TeV</u>
- ヒッグス粒子発見 ← ノーベル賞
- Run2 (2015 ~ 2018)
 - 139 fb⁻¹ @13TeV
- Run3 (2022 ~ 2025)
 - ~300 fb⁻¹ @13.6TeV

HL-LHC (High Luminosity LHC)

Run4, 5, ... (2029 ~ 2040)? - ~3000 fb⁻¹ @14TeV?

数年毎にデータ取得→加速器・検出器の増強 ・メンテナンスを繰り返している.

現行の解析 → Run2 近未来の話 → Run3 将来の話 → HL-LHC

20/Feb/2022

My Analysis

20/Feb/2022

Introduction

階層性問題

標準模型では higgs 質量は計算出来ない. 一方, higgs 質量の補正項 ~O(Λ²) かつ higgs 質量 125 GeV. m² = (m^{bare})² + (Δm^b)² Λ = 10^{15~19} GeV

20/Feb/2022

SUSY - Neutralino Dark Matter?

Relic Density vs Neutralino Mass

Wino DM なら質量約3 TeV 以下 Higgsino DM なら質量約1 TeV 以下

20/Feb/2022

Strong SUSY 探索:複数の高エネルギージェット + 大きな MET - gluino/squark 探索 ~ 2 TeV, stop 探索 ~ 1 TeV

EWK SUSY 探索: レプトンと MET.

生成断面積が低い分生成量が少ない.

特に縮退領域はハードなオブジェクトが無く探索が難しい.

20/Feb/2022

4-Layer Track Reconstruction

ATLAS 検出器の構成

20/Feb/2022

28th ICEPP Symposium

500

信号の生成過程及び事象選択

Electroweak(EWK) Production

Strong Production

事象選択

- Data : 2015 2018 (136 fb⁻¹)
- ・ Ermiss トリガー
- · Lepton VETO

Kinematics	EWK	Strong	
ET ^{miss} >	200 GeV	250 GeV	
leading Jet p⊤ >	100 GeV	100 GeV	
2 nd and 3 rd Jet pT >	-	20 GeV	
$\Delta \phi$ min (Jet _{1,2,3,4} , E _T ^{miss}) >	1.0	0.4	

・<u>消失飛跡候補:</u>

- 飛跡の質が良く他のオブジェクトから離れている
- high-p_T (> 60 GeV for model-independent analysis)
- 4 層飛跡 (SCT VETO)
- カロリメータ VETO

└→ 背景事象削減のための新しい要求

20/Feb/2022

信号及び BG(背景事象) の特徴

主な BG process: $t\bar{t}$, W+jets, Z→ $\nu \nu$ +fake

ランダムコンビネーション

VETO することが難しい

20/Feb/2022

4 層飛跡として再構成される場合がある

背景事象推定の概要

<u>e/µ/hadron BG の見積もり</u>

20/Feb/2022

データドリブンで見積もった補正項を適用し, smearing function で 4 層飛跡の p^T 分布を推測 <u>fake BG の見積もり</u>

fake

(do が大きい)

4層飛跡の p⊤ 分布を 直接見積もる

例) Electron BG の見積もり

Track pT in BG-CR

TF(e, disap)

TF(e, calo)

100

120

140

160

180 2 M_{ee} [GeV

80

EWK channel

<u>high-pr (pr > 60 GeV)</u>領域における予測・観測事象数

	Electroweak channel	Strong channel	
Total Expected	3.0 ± 0.7	0.84 ± 0.33	
Observed	3	1	
$p_0(Z)$	0.5 (0)	0.38 (0.30)	
Observed $\sigma_{\rm vis^{95\%}}$ [fb]	0.037	0.028	
Expected $\sigma_{\rm vis}^{95\%}$ [fb]	$0.038 \begin{array}{c} ^{+0.014}_{-0.009}$	$0.024 \begin{array}{c} ^{+0.009}_{-0.003}$	

- 「信号領域に有意な超過は見られない」
- ✓ 増加統計以上の感度改善を達成
- UL on $\sigma_{vis}^{95\% CL} \sim 1/5$
- ✓ 共通の 1 事象がある

20/Feb/2022

信号領域に残った事象の詳細									
Entry は飛跡の pr 順 Meta & Kinematics			EWK $\cdot E_T^{miss} > 200 \text{ GeV}$ $\cdot \text{leading Jet } p_T > 100 \text{ GeV}$ $\cdot \Delta \phi_{min} (\text{Jet}_{1,2,3,4}, E_T^{miss}) > 1.0$			GeV) > 1.0	Strong $\cdot E_T^{miss} > 250 \text{ GeV}$ $\cdot \text{ leading Jet } p_T > 100 \text{ GeV}$ $\cdot 2nd, 3rd \text{ Jet } p_T > 20 \text{ GeV}$ $\cdot \Delta \phi_{min} (\text{Jet}_{1,2,3,4}, E_T^{miss}) > 0.4$		
# Entry	Year	<µ>	E _T miss]	st Jet Pt	Δ	$\Delta \phi$		
1	2017	25	211 GeV		206 GeV	3.	.11		
2	2017	30	201 Ge\	/	101 GeV	2	.38		
3	2016	19	536 Ge\	/	498 GeV	3	.06	閾値	
<u>飛跡情報 60^{GeV} 10^{5} 0^{5} -0^{10} $20^{0^{4}}$</u>							5 GeV		
# Entry	pT	Eta	Phi	d₀ sig	z₀sinθ	飛跡の 悪 0 ~ 1	質 良	(周辺飛跡の pт 総和)/(自身のp⊤)	E _T calo
1	103 GeV	-1.19	1.07	0.66	0.25	0.26		0.000	3.7 GeV
2	334 GeV	1.01	-0.82	1.31	0.01	0.12		0.000	0.5 GeV
3	1184 GeV	1.52	0.37	0.89	0.00	0.58		0.001	1.1 GeV
インパクトパラメータ 「 「 「 「 「 」 「 」 「 」 「 」 」 「 」 」 「 」 「									

20/Feb/2022

20/Feb/2022

28th ICEPP Symposium

24

到達感度 (EWK channel, Wino 探索)

28th ICEPP Symposium

20/Feb/2022

到達感度 (EWK channel, Higgsino 探索)

前回解析 (36.1 fb⁻¹): 155 GeV

本解析 (136 fb⁻¹): 210 GeV

20/Feb/2022

pure-higgsino LSP 領域に高い感度

20/Feb/2022

Future Study

EWK サンプルで chargino 2 本要求 (大統計が必要) -> 数学的に chargino の運動量が解ける 条件は緩めにかける. 飛跡1本で BG 分離 O(10-5)

28

20/Feb/2022

29

28th ICEPP Symposium

20/Feb/2022

Chargino 質量再構成の結果

※ MC のサンプル数分だけ使った結果で Int. Lumi. とは紐づいていない 全体的に低め(~93%)に見積もられており、~1 TeV まで大きな違いは見られない.

- dE/dx 算出方法(truncated mean)によるバイアスの可能性

20/Feb/2022

事象数に応じた Chargino 質量の精度

元の分布: 1309 events = 2618 tracks

20/Feb/2022

Summary

- 消失飛跡を用いることで探索の難しい EWK SUSY の縮退領域
 (pure-wino DM, pure-higgsino DM シナリオ)の探索が可能.
- LHC-ATLAS 実験 Run2 全データ(~136 fb⁻¹)を用いた 4 層飛跡検出に
 よる消失飛跡探索を行った結果,解析手法の改善により統計以上の感度
 改善を達成(到達断面積~1/5) arXiv:2201.02472
- chargino を 2 本再構成することで短い飛跡に対しても高い運動量
 分解能を持ち、Pixel dE/dx 情報と併用することで chargino (≒
 DM) 質量を再構成することが出来る.
- 5 events 観測すると~100 GeV 程度の精度で質量がわかる.

Backup

20/Feb/2022

20/Feb/2022

<u>飛跡パラメータの真値との差分</u>

最終的な飛跡効率は~30%/chargino

20/Feb/2022 2

Smearing Function の作成

標準飛跡の pT 分布から 4 層飛跡の pT 分布に焼き直す ために 'smearing function' を用意する.

<u>Smearing Function の作り方</u> 良く ID された lepton 2 本で Z -> II events を選ぶ. µ/e 飛跡を pixel 4 層のみで飛跡再構成し直すことで 4 層飛跡を得て,元の飛跡からの (q/pT) 差分を見る.

20/Feb/2022

- ・原理的に 4 層飛跡の pT 分布を
 再現可能であることは確認済み
- · pT, n 依存は negligible.
- pile-up 依存性があり,
 systematic uncertainty に含まれる (最大~10%).

Fake BG の見積もり

fake tracklet (large d0 sig)

Fake CR の事象選択

 $\cdot |d_0|/\sigma(d_0) > 10$

jet

· without $E_{T^{miss}}$ requirement

以下の関数でフィット $f(p_{\rm T}) = \exp\left(-p_0 \cdot \log(p_{\rm T}) - p_1 \cdot (\log(p_{\rm T}))^2\right)$

SR における fake BG のスケール B

-> A x (D/C)

dO 依存性は F/E と D/C を比較することで評価.

20/Feb/2022

信号事象の割合が少ない領域 を用いて背景事象見積もりの 正当性を検証.

> 予想事象数と観測事象数 は誤差の範囲内で一致.

20/Feb/2022

Future Prospect

3層飛跡の再構成と

今のデータだけでも やれることがまだまだある.

20/Feb/2022 28th ICEPP Symposium

Expectation

20/Feb/2022

track reconstruction + selection efficiency = 50% に仮定. barrel track を前提とした acceptance cut 有り.

ATLAS における消失飛跡を用いた Wino 探索感度の推移

解析手法の改善により毎回 統計以上の感度改善を達成. 今後の解析でも新たな改善を予定している.

20/Feb/2022

LHC-ATLAS 実験

陽子-陽子衝突型円形加速器 LHC で行なわ れている主要 4 実験の内の 1 つであり, 標準模型の精密測定や新物理の発見が目 的.

<u>これまでの運転状況及び計画</u>

Run1 (2010 ~ 2012)

- 5 fb⁻¹ @7TeV + 20 fb⁻¹ @8TeV
- ヒッグス粒子発見
- Run2 (2015 ~ 2018)
 - 139 fb⁻¹ @13TeV
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

Run3 (2021 ~ 2023)

- ~300 fb⁻¹ @14TeV?

<u>ヒッグス粒子発見以降,</u> <u>その他の新粒子は見つかっていな</u> い

<u>Run2 におけるデータ取得量の推移</u>

Natural SUSY

階層性問題を解決するために SUSY を導入したのだから, 新たに別の fine tuning が必要になっては本末転倒.

→ higgs 質量の補正項は小さいのが自然.

10.1007/JHEP09(2012)035

higgsino, stop, gluino は軽いかもしれない.

20/Feb/2022

→ LHC で到達出来るエネルギー領域に well-motivated な物理があるのは面白い.

LLP (Long-Lived Particle)

✓ BSM 粒子が長寿命になるケースは多々ある

- 媒介粒子が重い (SM: μ -> ev ν)
- 質量差が小さい (SM : n -> pev)
- 結合定数が小さい
- √ 特殊なオブジェクトを伴う場合が多い
 - 通常の解析では捉えられず,<u>見逃して</u> しまう可能性がある.
 - 解析技術・手法の発展により探索可能 領域が拡張.
 - 技術面・リソース面の問題に直面する こともしばしば.
 - -> まだまだ発展途上であり, エ夫次第で飛躍的に進展する 可能性のある面白い分野!

<u>長寿命粒子が残すであろう様々な実験的特徴</u>

20/Feb/2022

Simplified Model

最小限の粒子, 質量関係, BR のみを考慮

20/Feb/2022

$$m_{\tilde{g}}, m_{\tilde{\chi}_{1}^{0}} < \mathcal{N} = \mathcal{N} = \mathcal{N}$$
$$m_{\tilde{\chi}_{1}^{\pm}} = (m_{\tilde{g}} + m_{\tilde{\chi}_{1}^{0}})/2$$
$$BR(\tilde{g} \to qqW\tilde{\chi}_{1}^{0}) = 1$$

特定の topology, kinematics に対し共通の尺度で解釈可能. ATLAS, CMS では 2011 年より推奨.

CLs method について

CLs method とか、95% 信頼度ってなに?
 取り決めた「test statistic」を使った統計処理

• 緑 / 黄色 > 0.05 となるような信号数を棄却

20/Feb/2022

 あとは、信号の検出効率とルミノシティーを考慮 すれば、「断面積」の上限値になる

33

Run-1 pMSSM-19 Scan Parameters

- Using a 19 parameter pMSSM as basis model
 - No CP violating parameters
 - Minimal flavor violation
 - Degenerate 1st and 2nd generations sfermions
 - Lightest sparticle (LSP) is a neutralino
 - R-parity is exactly conserved (LSP is stable)

• Sample parameters uniformly over wide range (up to 4TeV)

Higgs sector parameters:

1 < tan β < 60 0.1 TeV < M_A < 4 TeV

Neutralino/chargino mass parameters:

-4 TeV < μ < 4 TeV, $|\mu|$ >80 GeV -4 TeV < M₁ < 4 TeV

 $-4 \text{ TeV} < M_2 < 4 \text{ TeV}, |M_2| > 70 \text{ GeV}$

Slepton mass parameters:

 $0.09 \text{ TeV} < m_{eL} = m_{\mu L} < 4 \text{ TeV}$ $0.09 \text{ TeV} < m_{eR} = m_{\mu R} < 4 \text{ TeV}$ $0.09 \text{ TeV} < m_{\tau L} < 4 \text{ TeV}$ $0.09 \text{ TeV} < m_{\tau R} < 4 \text{ TeV}$ $\begin{array}{l} Squark/gluino \ mass \ parameters: \\ 0.2 \ TeV < M_{_3} < 4 \ TeV \\ 0.2 \ TeV < m_{_{q1L}} = m_{_{q2L}} < 4 \ TeV \\ 0.2 \ TeV < m_{_{uR}} = m_{_{cR}} < 4 \ TeV \\ 0.2 \ TeV < m_{_{dR}} = m_{_{sR}} < 4 \ TeV \\ 0.1 \ TeV < m_{_{q3L}} < 4 \ TeV \\ 0.1 \ TeV < m_{_{tR}} < 4 \ TeV \\ 0.1 \ TeV < m_{_{tR}} < 4 \ TeV \\ 0.1 \ TeV < m_{_{tR}} < 4 \ TeV \end{array}$

Flavor physics

constraints

Trilinear coupling parameters:-4 TeV $< A_b < 4$ TeV-8 TeV $< A_t < 8$ TeV-4 TeV $< A_t < 4$ TeV

20/Feb/2022

Run-1 Non-ATLAS Search Constraints®

- For each point evaluate whether it is a "viable" model
 - Model has to be theoretically "sound"
 - Model should not already be excluded by other measurements

20/Feb/2022

Run-1: Dark Matter Relic Abundance

Dark Matter relic abundance only applied as an upper bound

28th ICEPP Symposium

20/Feb/2022

- There is no p_T resolution for 2-layer tracks.
- If we require two chargino tracks, chargino p_T can be calculated from track ϕ_i (i=1,2) and E_T^{miss} with high resolution.

20/Feb/2022

Some Checks

 Δp_T between chargino and neutralino

54

20/Feb/2022

※2層 Track の dE/dx 値は通常の Track と算出方法が異なるので、別途較正が必要

20/Feb/2022

Pixel dE/dx

charge は ToT で測定(1 ToT = 25 ns)

- IBL 4-bit (FE-I4) overflow bin あり
- Pixel 8-bit (FE-I3) overflow はロスト

MIP に相当する ToT の値

- 30 (2015, 2016 の外側 pixel)
- 18 (2016 の B-layer)
- 10 (2015 の IBL)
- 8 (2016 の IBL)

20/Feb/2022

track dE/dx は個々の good cluster の平均値で定義. good cluster は geometrical に正しく charge を収集 出来ているであろう cluster. (確率 91%) local coordinate と cos(α) に制限. (前者がメイン)

通常の track dE/dx を計算するときは Landau のテール を除くために highest charge cluster を除外して平均値 を計算する. (truncated mean)

28th ICEPP Symposium

1 hit あたりなので.

16 は超え得る

例えば IBL でも ToT

bias の原因は multi-scatter の散乱角を考慮するときに pion を仮定しているため.

20/Feb/2022

dE/dx Calculation

補正した dE/dx を使って適切な dE/dx 計算方法を模索する. (ToDo) standard track では truncated mean が用いられている.

Distribution of Clusters/Good Clusters

Track dE/dx with IBL Overflow Case					
# Good Clusters Removed Clusters		Truncated dE/dx			
1	-	IBL Overflow Value			
2	C _{IBL}	C ₀			
3,4	if $C_0 > C_{IBL} \rightarrow C_{IBL}$ and C_0	Average of remaining			
	if $C_0 < C_{IBL} \rightarrow C_{IBL}$	Average of remaining			
≥5	C_0 and C_{IBL}	Average of remaining			

# of Good Clusters	# of GC excluded	Mean (MeV g^{-1} cm ²)	Resolution %
1	0	1.253 ± 0.004	16.2 ± 0.4
2	0	1.169 ± 0.001	13.9 ± 0.1
3	1	1.202 ± 0.001	10.9 ± 0.1
4	1	1.230 ± 0.001	10.1 ± 0.1
≥ 5	2	1.256 ± 0.001	9.5 ± 0.1

20/Feb/2022

59

dE/dx @ Pixel Detector

Pixel 検出器では ToT を使って cluster charge を見積もっている. ToT と飛跡情報から,飛跡に付随す る 1 つ 1 つの cluster に対し, dE/dx を計算できる.

28th ICEPP Symposium

20/Feb/2022

ToT で損失エネルギーを測定

