アニーリングマシンを用いた 組み合わせ最適化による 飛跡再構成の性能評価と改善

2022/2/20 早稲田大学 寄田研究室 M1南 樹里

HL-LHC実験

- ・2028年頃からHL-LHC運転が予定されている
 - ・瞬間ルミノシティ(設計値) $> 1 \times 10^{34} cm^{-2} s^{-1} \rightarrow 7.5 \times 10^{34} cm^{-2} s^{-1}$
 - ・積分ルミノシティ >350fb⁻¹ → 4000fb⁻¹
 - ・パイルアップ<µ> ▶20~40 → 200
- ・現状の内部飛跡検出器はInner Trackerに 総入れ替え
 - ・全シリコン製検出器
 - ・ピクセル検出器 + ストリップ検出器
 - ・読み出しチャンネル数の増加

HL-LHC実験における荷電粒子の飛跡再構成

icepp symposium

- ・加速器の高輝度化・検出器の微細化によって 必要な計算資源は増加
 - ・今後の開発状況次第で、計算資源が不足する
 可能性
 - ・特に、荷電粒子の飛跡再構成では多くの計算資源が必要
- トリガーの段階で全ての飛跡を再構成すること
 は現状でも難しいが、さらに困難に
- ・飛跡再構成にかかる時間はパイルアップに 依存して増加

量子コンピュータ 量子アニーリング方式:組み合わせ最適化問題 に特化 量子ゲート方式:問題ごとに量子回路を作成、 多様な問題に対応 荷電粒子の飛跡再構成を組み合わせ最適化問題に落とし込むことで アニーリング技術を使って高速かつ高性能な飛跡再構成を行えないか?

膨大なヒットの中から、飛跡候補となる組み合わせを 選び出す問題

荷電粒子の飛跡再構成

▶組み合わせ最適化問題と考えられる

飛跡候補

量子アニーリング

量子アニーリングは金属の焼きなましに着想を得た手法で、 組み合わせ最適化問題に対する汎用近似解法

量子アニーリング(QA)の原理

シミュレーテッドアニーリング

現在の量子アニーリングマシンにはいくつかの課題が存在

・ビット数に制限、結合が疎結合、大規模化が困難

デジタル回路を用いて組み合わせ最適化問題を高速に解くことが出来るマシンが 開発されている

・常温で安定に動作、大規模化が比較的容易

- ・各ビットの組み合わせを少しずつ変化させていくことでエネルギーの
 低い状態へ遷移
- ・このとき、エネルギーが小さくならなくても、ある確率で次の状態へ 遷移する。この確率は「温度」に対応するパラメータで制御される
- 高い温度のときには広い範囲で探索を行い、温度が低くなるにつれて探索範囲を狭めることで局所解に陥ることを防ぐ

2022/2/20

現在開発されている主なアニーリングマシン

	D-Wave	富士通	Fixstars	B	立	東芝	NEC	NTT
名称	Advantage	Digital Annealer	Amplify Annealing Engine	CIV Anne	1OS ealing	Simulated Bifurcation Machine	Vector Annealing サービス	コヒーレント イジング マシン
最大ビット数	5,000以上	100,000	100,000以上	144k	100k	1,000,000	100,000	100,000
結合	ペガサス グラフ	全結合	全結合	キング グラフ	全結 合	全結合	全結合	全結合
全結合換算 ビット数	124	100,000	65,536	176	100k	1,000,000	100,000	100,000

- 様々な企業によってアニーリングマシンの開発が進められており、その性能は 近年急速に向上している
- 結合の方式やビット数によって扱える問題や得意な問題が異なる

➢ 今回は全結合かつビット数の多いFixstars Amplify Annealing Engineを用いる

Fixstars Amplify Annealing Engine(AE)

Fixstars社が開発したアニーリングマシン

▶GPU(Graphics Processing Unit)回路でシミュレーテッドアニーリングを行う

▶各ビット間は全結合

- ▶最大ビット数 100,000以上
 - ・各ユーザーが利用できるのは100,000まで
- > 全結合換算ビット数 65,536
 - ・各ビットが全結合した問題の場合の計算可能な最大ビット数

<u>AEのパラメータ</u>

timeout:アニーリングの実行時間を指定する。解は必ず一つ以上出力されるように動作する。そのため、指定時間以内に終了しない場合もある。

num_unit_steps:アニーリングの単位ステップ数。この回数モンテカルロステップを行うと 解を記録。値を大きくすると解の品質が安定するが、解の収束は遅くなる。

- ・Pt>1GeVかつ4hit以上の飛跡を結果の評価に使用 efficiency = 件構成され
- ・結果の評価には右のefficiencyとpurityを用いる (50%以上のhitを再構成出来た飛跡を正解と定義)

 $ficiency = \frac{再構成された正解のtrack}{\pi K}$ $purity = \frac{再構成された正解のtrack}{\pi K}$

結果

- ・100% of HL-LHCにおいてもefficiency 約94%, purity 約86%で再構成出来た
- ・QUBO生成の時間が大きな課題

QUBOの設定 -doublet model-

- ・2つのヒットをつなげたdoubletをビットに設定
- triplet modelと比べて、QUBO作成の時間の短縮
 や短い飛跡への応用を期待
- ・始点や終点を共有するdoublet同士には高いエ ネルギーを与え、間の1点を共有し曲率に近い doublet同士や間の点を共有せず曲率が近い doublet同士には低いエネルギーを与える

QUBOに入れる doubletは曲率 とz₀で制限する

doublet modelを用いた飛跡再構成の結果 131particles

- ・Pt>1GeVかつ4hit以上の飛跡を結果の評価に 使用
- ・QUBOを分割せずに一括で問題を解いた

結果

- ・efficiencyは約95%, purityは約100%
- ・アニーリング時間約450[ms] QUBOの生成時間約13[s]
- ▶QUBOの最適化によるefficiency, purityの向上、 分割によるアニーリング時間・QUBOの生成時間 短縮が見込まれる

20% of HL-LHC

約9,500doublets

doublet modelを用いた飛跡再構成の結果

- ・AEのビット数の制限により、 η を2分割、 ϕ を8分割して解いた(η =0.01、 ϕ =0.1のオーバーラップ)
- ・どのdensityにおいても、90%以上のefficiencyと80% 以上のpurityで再構成可能
- ・efficiencyは安定しているが、purityはdensityに応じて少しずつ悪化
- ・分割をしない場合にQUBOの生成にかかる時間
 (doublet(+triplet, quadruplet)の生成・選別、QUBOの係数の計算)を計測
- doublet modelはtriplet modelと比較してQUBOを生 成する時間が大幅に減少

doublet modelを用いた飛跡再構成の結果

- ・それぞれのmodelにおける分割をしない場合の QUBOのビット数
- ビット数はdensityに応じて多項式的に増加
- ・doublet modelはtriplet modelと比較してQUBOの ビット数が多い
- ・ηを2分割、φを8分割した場合に必要なアニーリング time[s] 時間を比較(分割したQUBOの中の最大値)
- ・同じ分割数の場合、doublet modelの方が必要なア ニーリング時間は長くなる
- ・QUBOの分割数を増やすことで、アニーリング時間は さらに短縮可能 2022/2/20

of bits

number

まとめ・今後の展望

- アニーリングマシンは組み合わせ最適化問題を高速に解くことが可能な技術であり、その性能は近年急速に向上している
- ・現在様々なアニーリングマシンが開発されており、今回は全結合かつビット数の多 いFixstars Amplify Annealing Engineを利用
- ・tripletをビットとしたQUBOでは、どのdensityにおいても85%以上のefficiencyとpurity で再構成することが可能
- ・doubletをビットとしたQUBOを設定
 - ・100% of HL-LHCの場合に、80%以上のefficiencyとpurityで再構成することが出来た
 - triplet modelと比較してQUBO生成の時間を大幅に短縮することが出来た

<u>今後の展望</u>

- ・doublet modelの改善・性能向上、短い飛跡など特殊な飛跡への応用可能性の検討
- ・アニーリングマシンのその他の応用可能性の検討

Back Up

QUBOの設定 -triplet model-

- ・アニーリングマシンへの入力はQUBO(Quadratic Unconstrained Binary Optimization)形式で行う
- ・3つのヒットをつなげたtripletをビットに設定したmodel
- ・始点や終点を共有するtriplet同士には高いエネル ギーを与え、間の2点を共有し曲率が近いtriplet同士 には低いエネルギーを与える

$$H(a, b, T) = \sum_{i}^{N} a_{i}T_{i} - \sum_{i}^{N} \sum_{j < i}^{N} S_{ij}T_{i}T_{j} + \sum_{i}^{N} \sum_{j < i}^{N} \zeta_{ij}T_{i}T_{j}$$

$$T_{i} \in \{0, 1\}$$

(各tripletIC対応) 2つのtripletが間の2点を
共有し曲率が近い 2つのtripletが始点
や終点を共有する

QUBOに入れるtripletと quadrupletは曲率やz方向 の角度で制限する

QUBOのパラメータ -triplet model-

$$H(a, b, T) = \sum_{i}^{N} a_{i}T_{i} - \sum_{i}^{N} \sum_{j < i}^{N} S_{ij}T_{i}T_{j} + \sum_{i}^{N} \sum_{j < i}^{N} \zeta_{ij}T_{i}T_{j}$$

$$a = C_{1}(1 - e^{-\frac{d_{0}}{C_{d_{0}}}}) + C_{2}(1 - e^{-\frac{Z_{0}}{C_{Z_{0}}}})$$

$$\zeta = 1$$

$$\zeta = 1$$

$$S_{ij} = C_3 \frac{1 - C_4 \left(P_{ij}^R + P_{ij}^\theta \right)}{\left(1 + H_i + H_j \right)^{C_5}} \quad P_{ij}^R = \frac{\left| \left(\frac{1}{R} \right)_i - \left(\frac{1}{R} \right)_j \right|}{C^R} \quad P_{ij}^\theta = \frac{\max(\delta \theta_i, \delta \theta_j)}{C^\theta}$$

$$\stackrel{\pi - \nu o \ max \$$

HL-LHC環境における飛跡再構成の結果

- ・どのdensityにおいてもefficiencyとpurityは85%以上
- ・efficiencyは93%前後で一定、purityはdensityが大きく なるにつれて少しずつ悪化

- ・各densityにおける1回のアニーリングに必要な時間を 計測
 - ・ただし、1回のアニーリングの場合、60%以上のときの再構成 率は下がる
- ・densityが大きくなるにつれて必要な時間は指数関数的 に増加
- ➤QUBOの分割によってefficiency, purityは数%改善、
 - アニーリング時間、QUBOの生成時間は短縮可能 2022/2/20 icepp symposium

LHCデータを用いた飛跡再構成の結果

- ・LHCで取得した実データ1eventを使用
- ・現状の飛跡再構成に使われたClusterを入力
- ・Pt>0.5GeVかつ5Cluster以上の飛跡を結果の 評価に使用
- ・結果の評価には以下のpurityとefficiencyを 用いる $efficiency = \frac{ 再構成された正解のdoublet}{ 正解のdoublet}$ $purity = \frac{ 再構成された正解のdoublet}{ 再構成されたublet}$

結果

- ・95%以上のpurityとefficiencyで再構成可能
- ・アニーリング時間は~100[ms]

LHCデータを用いた飛跡再構成の結果

・LHCの実データ1000eventを使用して飛跡再構成

結果

- ・tripletの数が5,000以下であればpurityと efficiencyは90%以上を保つ
- ・purityとefficiencyにはtripletの数と大きな相関がある
- ・QUBOの分割によって常に5,000bit以下に抑えるで性能の安定が期待できる

efficiency[%]

QUBOの分割による性能向上

- ・100% of HL-LHCの粒子数でQUBOの分割を 行った
- ・ηを4分割、φを0,2,4,8,16分割している
- ・それぞれ、 η =0.01、 ϕ =0.1のオーバーラップ を入れている

結果

- ・分割によってpurityとefficiencyは向上
- ・アニーリング時間も大幅に減少
- ・ηを4分割、φを4分割することで性能は約 +5%、時間は約1/6に短縮することが出来る

preselection -doublet model-

- ・基本的なdoubletの作り方はtriplet modelのときと同じ <u>doubletの選別</u>
 - ・原点を通ると仮定して曲率を求めて、 $\frac{1}{R} < 8 * 10^{-4} (P_T > 0.75 GeV)$ でカット
 - ・z0がbeamspot_width(55/2mm)を超えるものはカット

doublet modelを用いた飛跡再構成の結果

・AEのビット数の制限により、 η を2分割、 ϕ を8分割 して解いた(η =0.01、 ϕ =0.1のオーバーラップ)

結果

- ・100% of HL-LHCにおいて、efficiencyは約94% purityは約83%
- ・アニーリング時間 約4.2[s]

QUBOの生成時間約290[s](分割したQUBOの中の最大値)

>QUBOの最適化によるefficiency, purityの向上、 分割方法の改善・さらなる分割によるアニーリング時間・QUBOの生成時間短縮が見込まれる

652particles 100% of HL-LHC 約190k doublets 間違った飛跡 間違った飛跡(truth由来) 再構成された飛跡(High Pt) 再構成された飛跡(low Pt) 再構成されなかった飛跡

現状かかっている時間

- 20% of HL-LHC
- Pt>1GeV,≧4Hit
- d0z0 cut

	time[s]
create doublet	6.8
filter doublet	4.31
	time[s]
QUBO building	2.20
	time[s]
Annealing time	0.46

2022/2/20

icepp symposium

efficiencyの変数依存性

- 20% of HL-LHC, Pt>1GeV, \geq 4Hit
- 100event、11019tracks
- real:10551本、truth:11019本

track lengthごとのefficiency, purity

- 100% of HL-LHC
- Pt>1GeV, \geq 4Hit
- $|\eta| < 1.7$

短い飛跡への応用 例) $\phi = 1.0, \theta = 1.0$ に直線の飛跡を入れた場合

短い飛跡への応用例

- ・内側4層のみを通る飛跡を入れ込み、再構成可能か検証
- ・ doublet modelを用いる

- ・20% of HL-LHCに対して、
 - ・1eventに100本入れた場合に94本の飛跡を再構成出来た
 - ・異なる100eventsに1本ずつ入れた場合に96eventsで再構成 _図 出来た
- ・60% of HL-LHCに対して、
 - ・1eventに100本入れた場合に76本の飛跡を再構成出来た
 - ・異なる100eventsに1本ずつ入れた場合に65eventsで再構成 出来た
- ・飛跡を入れ込んでも全体のefficiency, purityは変化しない

短い飛跡への応用例

・内側4層のみを通る飛跡(直線)を人工的に埋め。

- ・20% of HL-LHCに対して、
 - ・1eventに1本入れた場合:正解率91%
 - ・1eventに100本入れた場合:正解率94%
 - ・異なる100eventに1本ずつ入れた場合:正解率96%
- ・60% of HL-LHCに対して、
 - ・1eventに1本入れた場合:正解率64%
 - ・1eventに100本入れた場合:正解率76%
 - ・異なる100eventに1本ずつ入れた場合:正解率65%
- ・飛跡を入れ込んでも全体のefficiency,purityは変化しない

短い飛跡への応用例

・飛跡の閾値を4hit→3hitに下げ、内側3層のみを通る 飛跡(直線)を再構成可能か検証

- ・10% of HL-LHCに対して、
 - ・1eventに1本入れた場合:正解率0%(試行回数100回)
 - ・1eventに100本入れた場合:正解率6%
 - ・異なる100eventに1本ずつ入れた場合:正解率0%

▶ 現状ではバレル領域に限定してtrackingしている
▶ バレル領域かつ $|\eta| < 1.7$ にあるhitに限定してtrackingを行う

実行時間

- ・本研究は、飛跡再構成(ヒットのクラスタリング、 パターン認識、fitをしてPtなどパラメータの算出) の内、パターン認識の箇所のアルゴリズムを検 証
 - ▶現状のtrackingにおける全体の時間との比較は現段 階では難しい
 - ▶今回のMCサンプルに対して現状のトラッキングを走らせることで比較は可能
- ・今回のアルゴリズムの流れ(右図)
- ・今回計測した時間はQUBOの作成の時間と、ア ニーリング時間
- ・この他にも、実際にはAEのCPU時間、キュー待ち
 時間などがかかってくる

2022/2/20

icepp symposium