1

ハン **29**歳 韓国

D1 @ 東大宇宙線研 **Super-Kamiokande** ニュートリノ

Super-Kamiokande: target physics and issues

My contribution: delayed particle tagging

2

A long time ago in a galaxy far, far away....

1974 : SU(5) GUT predicts proton decay

1983: KAMIOKA Nucleon Decay Experiment.

 $M.$ KOSHIBA $(*)$ IOEPP, Faculty of Science, University of Tokyo

Underground Water Cherenkov Detector

PMT

 $\bar{\nu}p \rightarrow \mu^{+}n\pi^{0}$?

6

1987 :

UTC 07:35 Feb 23, 1987 24 neutrinos detected on Earth 3h earlier than optical light SN1987A $E_{\rm g}$ (MeV) Kamiokande II 1min 1min 40 30 20
10 $\tau(\nu\tau)$ $9:56:00$ 54 see 2 see 9:36:20 $7:35.40$ $7:35.50$ 40
30
20
10 Baksan 7-86-20 $7.55.50$ 7.36.00 \$:36.10 40
30
10
10 $±50ms$ IMB $7.35.50$ $7:36:20$ $7.35.40$ ₹: 36: 10 9.36.00 30
20
10 LSD $±2$ msec $7:35:50$ $7:26:20$ $7:35.40$ 2:36:19 $7:36:00$

Can we measure the amount of supernova "relic" neutrinos?

8

1998 :

Evidence for Oscillation of Atmospheric Neutrinos

And more…

Solution: *n* **coincidence?**

$$
Gd
$$

\n
$$
\sigma^{Gd} > 10^{5} \sigma^{H} > 10^{3} \sigma^{O}
$$

\n
$$
q
$$

\n
$$
\bar{\nu}_{\mu} + n \rightarrow \mu^{-} + p
$$

\n
$$
\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n \rightarrow H(n, \gamma)
$$

\n
$$
Gd(n, \gamma)
$$

\n8 MeV

11

Pure water 50,000,000 kg Gd-sulfide powder 13,000 kg

August 2020

Issues

• Noise

• Calibration / stability

• Event reconstruction

Takeaway

• SK, is a giant underground water tank with ~10,000 wall PMTs,

• Main targets include p -decay, ν astrophysics and oscillation.

• Recently, Gd was added to improve n detection and thus SNR.

that can detect rare/weak signals.

13

My contribution: delayed particle tagging

Abstract

- Delayed coincidence signals from a v-event: *e*: Michel electrons from μ -decay *n*: $γ$ -rays from nuclear capture of neutrons
- \cdot In SK so far, we've tagged e and n separately and independently; this results in significant mutual contamination in SK-Gd.
- \cdot I unified the e and n detection processes, and evaluated the performance.
	- How?
	- Performance?

15

Delayed *e***,** *n* **from** *ν* **events**

16

Problem with delayed particle tagging in SK-Gd

17

A considerable amount of n would be misclassified as e ! Plus, we lose n efficiency by the delay time > 18 µs cut.

• Reconstruct *ν* interaction vertex and apply ToF correction

18

- Reconstruct *ν* interaction vertex and apply ToF correction
-

• Search for signal "candidates" by # PMT hits within a small time window

- ToF correction from initial vertex
- Candidate search by # PMT Hits

Time [µs]

- ToF correction from initial vertex
- Candidate search by # PMT Hits
- For each candidate:

$$
True? \rightarrow e
$$

$$
False? \rightarrow \text{Neural} \\ \text{Network}
$$

Candidate Features(**MC**)

Generated near *ν* vertex

- ToF correction from initial vertex
- Candidate search by # PMT Hits
- For each candidate:

Single routine for *e*, *n* detection!

Check what?

e, *n* detection efficiency

purity (mutual contamination)

*e***-tagging performance check**

- e source: cosmic μ stopping within the detector
- Vertex reconstruction: μ entry point and momentum $+ \mu$ range table in water

Tagged *e* **purity #1**

 \cdot Try a simple exponential curve fit on t :

$$
Purity = \frac{(\# tagged) - (\# flat B)}{(\# tagged)} = 99
$$

t $Ae^{-t/\tau} + B$

9.3 ± 0.3 % (MC: 99.2%)

$\tau = 2.028 \pm 0.005$ µs $(\tau_{exp} = 2.027 \text{ }\mu\text{s})$

Tagged *e* **purity #2**

- Features: # of hits, angular and timing distributions, etc.
- \cdot Fit each normalized feature histogram of "data e " with: *purity* \times (MC true *e*) + (1-*purity*) \times (MC noise)
- Find the best fit purity that maximizes data's likelihood

*e***-tagging performance on cosmic μ (stat errors only)**

- Purity = $[exp. fit]$ (99.3 \pm 0.3)%, [likelihood fit] 99.6% (MC: 99.2%)
- Efficiency^{*} = $[exp.$ fit] $(98.6\pm0.6)\%$, $[likelihood$ fit] $(98.9\pm0.5)\%$ (MC: 98.8%)

* For *e*'s produced within [1, 20] µs from trigger

*n***-tagging performance check**

- *n* source: AmBe + surrounding BGO scintillator
- Vertex: source position (i.e., tank center)

31

Neural-network's *n***-likelihood output**

NN signal likelihood

*n***-tagging performance on AmBe**

MC ~98% Estimated purity:

Data 45.6%, MC 49.2% Estimated efficiency:

Results on SK-Gd atmospheric *ν* **MC (<1 GeV)**

- Comparing with the conventional method (independent tagging):
- -tag efficiency: 88%→88%, purity: 83%→96% *e*
- \cdot *n*-tag efficiency: 44% \rightarrow 51%, purity: 99% \rightarrow 99%

Mutual contamination is suppressed, while maximizing efficiencies!

My contribution summary and prospects

- Tagging e and n separately as in SK results in mutual contamination in SK-Gd.
- \cdot I unified the e and n detection processes, and evaluated the performance.
	- e-tagging almost as good as before SK-Gd
	- *n*-tagging efficiency increases by 15%
	- Mutual contamination is suppressed to minimal level
- We expect to improve oscillation parameter sensitivity with better particle tagging and event classification.

Backup

CP and MH sensitivity X2minCP from BuildContour's ChiSquared.root

Neutrino sources

- Super-high-E: AGN: astrophysics
- High-E: Atmospheric: osc params, MH, CP
- Mid-E: Artificial beam: osc params, CP, nuN interaction
-

• Low-E: Solar, reactor, relic: osc params, astrophysics, nucleosynthesis

$$
\begin{array}{ccc}\n & & t, L \\
\vert \nu_{m_1}(t) \rangle & & \text{if } \\ \n\vert \nu_{m_2}(t) \rangle & & \text{if } \\ \n\vert \nu_{m_3}(t) \rangle & & \text{if } \\ \n\sum_{i} U_{\alpha i} \vert \nu_{m_i}(t) \rangle & \text{if } \\ \n\end{array}
$$

 $P(\nu_{\alpha} \to \nu_{\beta}) \propto f(\theta, \delta, m | L, E)$

1 GeV ν_{μ} survival probability

Interaction with nucleus, BSM interactions, etc.

Others Proton decay, exotic interactions, GUT monopole, DM search, etc.

ν in SM: "massless" neutral leptons

What if *ν* were massive?

 $= U(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})$ *νm*1 *νm*2 *νm*3

 $P(\nu_{\alpha} \to \nu_{\beta}) \propto f(\theta, \delta, m, L, E) > 0$

νe νμ ντ = U_{e1} U_{e2} U_{e3} $U_{\mu 1}$ $U_{\mu 2}$ $U_{\mu 3}$ $U_{\tau 1}$ $U_{\tau 2}$ $U_{\tau 3}$ *νm*1 *νm*2 *νm*3

$$
U(\theta, \delta) \approx \begin{pmatrix} 0.8 & 0.6 & 0.1 \\ -0.5 & 0.5 & 0.7 \\ 0.3 & -0.7 & 0.6 \end{pmatrix} \text{ if } \delta = 0
$$

$$
\propto f(\theta | \delta, m, L, E)
$$

$$
P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \text{ iff } \delta \neq 0
$$

νe νμ ντ $= U(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})$ *νm*1 *νm*2 *νm*3

 $P(\nu_{\alpha} \rightarrow \nu_{\beta})$

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq$

Water Cherenkov detector

SK mostly sees: e, µ, γ, π

νμ

 $\bar{\nu}_{\mu}$

p

n

- Expected (osc. params) vs. = Flux X Oscillation (osc. Params) X XSec (*v* int. mode)
- **Disentangle** ν **int modes** by classifying ν events with detected particles
	- "Trigger" signals:
		- $\boldsymbol{\varTheta},$
		- 2*γ*

Why detect e , n from ν events?

* Not used in fit

MC: noise MC: true *e*Data

SK6 e-tagging performance by event time

SK6 n-tagging performance by event time

How do the new e/n-tag effs. affect ν event classification?

• SK4 neutron-inclusive analysis*:

* Pablo's PhD thesis (2017)

50

Three MCs with different n-tag effs. for comparison

- SK4 as usual
- SK6 with the box cut appplied
- SK6 with ideal e/n -tag efficiencies (i.e., # tagged $=$ # true)

Ideal: 100%

SK6: ~50% SK4: ~30% (Gd-eff: 79%, H-eff: 16%)

51

Number of events in each subclass

Improved n-tag efficiency takes away $\bar{\nu}$ -like events from ν -like events, as expected.

Sub-GeV e-like: tagged multiplicities

#e

SK4 SK6 Ideal

Multi-GeV μ-like: tagged multiplicities

SK4 SK6 Ideal

Benefits of *ν*/ $\bar{\nu}$ separation to CP and MH sensitivities

CP and MH effects show up in atmospherics via matter effect. *ν*/ $\bar{\nu}$ asymmetry characterizable by Δ*P* ≡ *P*(ν_{μ} → ν_{e}) − *P*($\bar{\nu}_{\mu}$ → $\bar{\nu}_{e}$)

*Prob3++

Assume correctly tagged if: $|T_{true} - T_{tagged}| < 50$ ns

Material: semi-realistic SK6 atmospheric ν MC

1) **Primary vectors**: 500-year-worth SK4 May 19 (2019)

2) **MC simulator**: skdetsim v14 (Rev. 29756) with SK5 COREPMT

- Randomly picked events taken from Run 85605 85902 (Jan 20 May 22, 2021)
- Extracted noise appended to [0, 535] μs range of each generated MC event
- 4) **Reconstruction**: APFit (21a)
- 5) **Reduction**: fccomb (21a)
	- SK5/6 "flasher database" assumed to be the same as SK4
- 6) **Neutron-tagging**: NTag (my own)
	- Neutron search range: **[18, 535]→[3, 535] μs** range in the ToF-subtracted residual time
	- NTag performance on single-neutron-only MC: ~60% tagging efficiency with 98% precision
- Gd 0.0110 wt.%
- No noise generation at this point, added simulated PMT after-pulse only

3) **Dark noise**: SK6 T2K dummy events

For validation with SK4, see [these slides.](https://www-sk.icrr.u-tokyo.ac.jp/~atmpd/meeting/20210803-local/sk6atmmc_han.pdf)

7) **Event classification**: fillnt + OscNtupleBuilder (for neutron-inclusive hybrid analysis) (21a)

*SK6-specific

Problem: Gd(n,γ)'s are tagged as decay-e in muechk

e-tagging efficiency by $\int \overrightarrow{x}^{True}_{e}$ *e*

$$
ue = \overrightarrow{x}^{\text{APFit}}_{\text{L}}
$$

1σ: 184 cm 1σ: 543 cm

Note: typical AmBe neutrons are expected to travel \sim 20 cm (1 σ), with \sim 60% tagging efficiency

1σ: 138 cm (~50% eff.) 1σ: 209 cm (~45% eff.)

Sub-GeV e-like: true fraction in event subclasses

Sub-GeV μ-like: tagged multiplicities

#e

77 | 1

SK4 SK6 Ideal

Sub-GeV μ-like: true fraction in event subclasses

Multi-GeV e-like: tagged multiplicities

SK4 SK6 Ideal

Multi-GeV e-like: true fraction in event subclasses

Multi-GeV μ-like: true fraction in event subclasses

