ハン 29歳 韓国

D1@東大宇宙線研 Super-Kamiokande ニュートリノ

Super-Kamiokande: target physics and issues

My contribution: delayed particle tagging

A long time ago in a galaxy far, far away....

1974 : SU(5) GUT predicts proton decay

1983 : KAMIOKA Nucleon Decay Experiment.

M. Koshiba (*) ICEPP, Faculty of Science, University of Tokyo

Underground Water Cherenkov Detector

Water 3,000 t +

PMT

1987 :

UTC 07:35 Feb 23, 1987 24 neutrinos detected on Earth 3h earlier than optical light **SN1987A** E (MeV) Kamiokande II 1min 1min 40 30 20 10 T(VT) 7:36:00 54 sec 2 sec 7:36:20 7:35:40 1:35:50 40 30 20 10 Baksan 7.86.20 7:55:50 7:36:00 4: 36: fO 40 30 10 ±50ms IMB 7 35 60 7:36:20 \$ 35:40 7:36:10 7.36.00 30 20 10 LSD ±2msec 7:35:40 7:36 20 7:15:50 7:36:10 7:36:00

Can we measure the amount of supernova "relic" neutrinos?

1998 :

Evidence for Oscillation of Atmospheric Neutrinos

	Super-Kamiokande Target Physics				
	Motivation	Lv. 1	Challenges Lv. 2	Lv. 3	Problem
Proton decay	Test GUT	Prove p-decay			Atm. v BG
Supernova neutrinos	Core collapse Astrophysics Cosmology	Detect SN v	Prove SN relic v		Atm. v BG
Atmospheric neutrinos	Test SM Lepton mixing	Prove oscillation	Measure oscillation parameters	Prove CPV	Anti-v ID

And more...

Solution: *n* **coincidence?**

$10^5 \sigma^H > 10^3 \sigma^O$

August 2020

Pure water 50,000,000 kg Gd-sulfide po

Gd-sulfide powder 13,000 kg

Issues

Noise

Calibration / stability

Event reconstruction

Takeaway

that can detect rare/weak signals.

•

• SK, is a giant underground water tank with $\sim 10,000$ wall PMTs,

Main targets include p-decay, ν astrophysics and oscillation.

Recently, Gd was added to improve n detection and thus SNR.

My contribution: delayed particle tagging

Abstract

- Delayed coincidence signals from a *ν*-event:
 e: Michel electrons from *μ*-decay
 n: *γ*-rays from nuclear capture of neutrons
- In SK so far, we've tagged e and n separately and independently;
 this results in significant mutual contamination in SK-Gd.
- I unified the e and n detection processes, and evaluated the performance.
 - How?
 - Performance?

Delayed e, n from ν events

$\bar{\nu}_{\mu} + p \rightarrow \mu + e + n$

Problem with delayed particle tagging in SK-Gd

A considerable amount of *n* would be misclassified as *e*! Plus, we lose *n* efficiency by the delay time > 18 μ s cut.

• Reconstruct ν interaction vertex and apply ToF correction

- Reconstruct ν interaction vertex and apply ToF correction
- •

Search for signal "candidates" by # PMT hits within a small time window

0	1
2	

- ToF correction from initial vertex
- Candidate search by # PMT Hits

- ToF correction from initial vertex
- Candidate search by # PMT Hits
- For each candidate:

True?
$$\rightarrow e$$

Candidate Features (MC)

Cherenkov ring Generated near ν vertex

- ToF correction from initial vertex
- Candidate search by # PMT Hits
- For each candidate:

Single routine for *e*, *n* detection!

Check what?

e, *n* detection efficiency

efficiency purity (mutual contamination)

e-tagging performance check

- *e* source: cosmic μ stopping within the detector
- Vertex reconstruction: μ entry point and momentum + μ range table in water

Tagged *e* **purity #1**

• Try a simple exponential curve fit on $t: Ae^{-t/\tau} + B$

. Purity =
$$\frac{(\text{# tagged}) - (\text{# flat B})}{(\text{# tagged})} = 99$$

9.3 ± 0.3 % (MC: 99.2%)

$\tau = 2.028 \pm 0.005 \,\mu s$ $(\tau_{exp} = 2.027 \ \mu s)$

Tagged *e* **purity #2**

- Features: # of hits, angular and timing distributions, etc.
- Fit each normalized feature histogram of "data e" with: purity \times (MC true e) + (1-purity) \times (MC noise)
- Find the best fit purity that maximizes data's likelihood

e-tagging performance on cosmic µ (stat errors only)

- Purity = [exp. fit] (99.3±0.3)%, [likelihood fit] 99.6% (MC: 99.2%)
- Efficiency* = [exp. fit] (98.6±0.6)%, [likelihood fit] (98.9±0.5)% (MC: 98.8%)

* For e's produced within [1, 20] µs from trigger

n-tagging performance check

- *n* source: AmBe + surrounding BGO scintillator ullet
- Vertex: source position (i.e., tank center) •

Neural-network's *n*-likelihood output

NN signal likelihood

n-tagging performance on AmBe

$$Ae^{-t/\tau} + B$$

Estimated efficiency: Data 45.6%, MC 49.2%

Estimated purity: MC ~98%

Results on SK-Gd atmospheric ν **MC (<1 GeV)**

- Comparing with the conventional method (independent tagging): •
- *e*-tag efficiency: $88\% \rightarrow 88\%$, purity $83\% \rightarrow 96\%$
- *n*-tag efficiency $44\% \rightarrow 51\%$, purity: $99\% \rightarrow 99\%$ •

Mutual contamination is suppressed, while maximizing efficiencies!

My contribution summary and prospects

- Tagging e and n separately as in SK results in mutual contamination in SK-Gd.
- I unified the e and n detection processes, and evaluated the performance.
 - e-tagging almost as good as before SK-Gd
 - *n*-tagging efficiency increases by 15%
 - Mutual contamination is suppressed to minimal level
- We expect to improve oscillation parameter sensitivity with better particle tagging and event classification.

Backup

CP and MH sensitivity

Neutrino sources

- Super-high-E: AGN: astrophysics •
- High-E: Atmospheric: osc params, MH, CP
- Mid-E: Artificial beam: osc params, CP, nuN interaction •

• Low-E: Solar, reactor, relic: osc params, astrophysics, nucleosynthesis

$$\begin{array}{c} |\nu_{m_{1}}(t)\rangle \\ |\nu_{m_{2}}(t)\rangle \\ |\nu_{m_{3}}(t)\rangle \\ \sum_{i} U_{\alpha i} |\nu_{m_{i}}(t)\rangle \end{array} \begin{array}{c} \nu_{\mu} \\ \nu_{\mu} \\ \nu_{e} \\$$

 $P(\nu_{\alpha} \to \nu_{\beta}) \propto f(\theta, \delta, m, L, E)$

1 GeV ν_{μ} survival probability

Check out the Super-Kamiokande list of publications for more!

Interaction with nucleus, BSM interactions, etc.

Others Proton decay, exotic interactions, GUT monopole, DM search, etc.

 ν in SM: "massless" neutral leptons

What if ν were massive?

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{m_1} \\ \nu_{m_2} \\ \nu_{m_3} \end{pmatrix}$

 $P(\nu_{\alpha} \to \nu_{\beta}) \propto f(\theta, \delta, m, L, E) > 0$

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}) \begin{pmatrix} \nu_{m_1} \\ \nu_{m_2} \\ \nu_{m_3} \end{pmatrix}$

 $P(\nu_{\alpha} \rightarrow \nu_{\beta})$

 $P(\nu_{\alpha} \to \nu_{\beta}) \neq$

$$U(\theta, \delta) \approx \begin{pmatrix} 0.8 & 0.6 & 0.1 \\ -0.5 & 0.5 & 0.7 \\ 0.3 & -0.7 & 0.6 \end{pmatrix} \quad \text{if } \delta = 0$$

$$\propto f(\theta, \delta, m, L, E)$$

$$P(ar{
u}_{lpha}
ightarrow ar{
u}_{eta})$$
 iff $\delta
eq 0$

Water Cherenkov detector

p n

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$ $\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n$

 $\bar{\nu}_{\mu}$ u_{μ}

SK mostly sees: e, μ, γ, π

Why detect e, n from ν events?

- Expected (osc. params) vs. = Flux \times Oscillation (osc. Params) \times XSec (ν int. mode)
- Disentangle ν int modes by classifying ν events with detected particles
 - "Trigger" signals:
 - e, μ
 - 2γ

MC: noise MC: true *e* Data

* Not used in fit

SK6 e-tagging performance by event time

SK6 n-tagging performance by event time

How do the new e/n-tag effs. affect v event classification?

SK4 neutron-inclusive analysis*:

* Pablo's PhD thesis (2017)

Three MCs with different n-tag effs. for comparison

- SK4 as usual •
- SK6 with the box cut appplied •
- SK6 with ideal e/n-tag efficiencies (i.e., # tagged = # true) •

Ideal: 100%

SK6: ~50% (Gd-eff: 79%, H-eff: 16%) SK4: ~30%

Number of events in each subclass

Improved n-tag efficiency takes away $\bar{\nu}$ -like events from ν -like events, as expected.

Sub-GeV e-like: tagged multiplicities

SK4

SK6

Ideal

v_e CC
\bar{v}_e CC
v_{μ} CC
$ar{m{ u}}_\mu$ CC
ν NC

Multi-GeV µ-like: tagged multiplicities

SK6

Ideal

Benefits of $\nu/\bar{\nu}$ separation to CP and MH sensitivities

CP and MH effects show up in atmospherics via matter effect. $\nu/\bar{\nu}$ asymmetry characterizable by $\Delta P \equiv P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

*Prob3++

Assume correctly tagged if: $|T_{true} - T_{tagged}| < 50 \text{ ns}$

Material: semi-realistic SK6 atmospheric v MC

1) **Primary vectors**: 500-year-worth SK4 May 19 (2019)

2) MC simulator: skdetsim v14 (Rev. 29756) with SK5 COREPMT

- Gd 0.0110 wt.%
- No noise generation at this point, added simulated PMT after-pulse only

3) **Dark noise**: SK6 T2K dummy events

- Randomly picked events taken from Run 85605 85902 (Jan 20 May 22, 2021)
- Extracted noise appended to [0, 535] µs range of each generated MC event
- 4) **Reconstruction**: APFit (21a)
- 5) **Reduction**: fccomb (21a)
 - SK5/6 "flasher database" assumed to be the same as SK4
- 6) **Neutron-tagging**: NTag (my own)
 - Neutron search range: [18, 535] \rightarrow [3, 535] μ s range in the ToF-subtracted residual time
 - NTag performance on single-neutron-only MC: ~60% tagging efficiency with 98% precision

7) Event classification: fillnt + OscNtupleBuilder (for neutron-inclusive hybrid analysis) (21a)

*SK6-specific

For validation with SK4, see these slides.

Problem: Gd(n,γ)'s are tagged as decay-e in muechk 😩

e-tagging efficiency by $|\overrightarrow{x}_e^{Tru}|$

1σ: 184 cm

$$ue - \overrightarrow{x}_{\nu}^{APFit}$$

1σ: 543 cm

n-tagging efficiency by $|\overrightarrow{x}_{(n,\gamma)}^{True} - \overrightarrow{x}_{\nu}^{APFit}|$

1σ: 138 cm (~50% eff.)

Note: typical AmBe neutrons are expected to travel ~20 cm (1 σ), with ~60% tagging efficiency

1σ: 209 cm (~45% eff.)

Sub-GeV e-like: true fraction in event subclasses

Sub-GeV µ-like: tagged multiplicities

SK6

Ideal

Sub-GeV µ-like: true fraction in event subclasses

Multi-GeV e-like: tagged multiplicities

SK6

Ideal

Multi-GeV e-like: true fraction in event subclasses

Multi-GeV µ-like: true fraction in event subclasses

