2022年02月20日 ICEPP Symposium

SK-Gdにおける宇宙線ミューオン由来の 中性子捕獲信号を用いた水槽内全域での エネルギー再構成の改善

東大理 横山・中島研究室 M1

志摩 靜香

本研究の概要・目的

▶2020年にSKタンクにガドリニウムが加えられ、SK-Gd実験が開始した

- 中性子の検出効率が劇的に向上
- 超新星背景ニュートリノの探索感度の向上

▶本研究では、核破砕中性子反応を用いる

- 核破砕中性子信号やGd濃度を用いた検出器応答の安定性の確認
- SKが検出した中性子信号の位置依存性、時間依存性を評価してエネルギー較 正手法の開発を目指す

SKでの低エネルギー領域の較正方法

▶SKでは様々なエネルギー領域での物理事象を観測するために各エネルギー領域で異なるエネルギー較正が行われている

energy	3.5 ~20MeV	~100MeV	100MeV~
物理事象	太陽ニュートリノ 超新星背景ニュー	-トリノ	大気ニュートリノ 陽子崩壊
	5 8 MeV 12 15 18 MeV		
DT calibration			
decay e	\bigcirc	約 50 MeVまで	
¹⁶ N	\bigcirc		
Ni	\bigcirc		
核破砕中性子	約 8 MeV		

▶ 太陽ニュートリノ

- SK-IVのエネルギー統計誤差: 0.54%(そのうち位置依存性が 0.44%)
- SK-IVの時間的な安定性: 0.5%以内で安定

→ SK-Gdでは、同じ程度かより良い精度を目指す

▶ 超新星背景ニュートリノ

- バックグラウンドを減らすことを重要視
- 中性子の検出効率を正しく理解

低エネルギー領域のエネルギー再構成

チェレンコフ光がヒットしたPMTの本数から荷電粒子のエネルギーに変換

- 低エネルギー事象では放出される光子が少なくヒットのPMT1つにつき
 1光電子程しか入射しない
- ▶ 50 ns 以内に光を検出したPMTの数: N₅₀

低エネルギー領域のエネルギー再構成

► N₅₀の補正

- ・位置依存性の他にもPMTのdark noiseやチェレンコフ光の散乱・反射、水の状況などによる影響があるので補正する必要がある
 - → この補正を較正によって評価する
- 従来の補正:N_{eff} (-> <u>p20</u>)
- Gd導入後、水質が変化したので新しい補正の手法を開発する必要がある

▶ 核破砕中性子

• 宇宙線ミューオンがSK検出器内の酸素原子と反応して生成する

7

解析 - 宇宙線ミューオン選別

▶ 宇宙線ミューオン選別条件

① Outer Detector とInner Detector の両方のPMTが反応

② IDで観測された信号の積分電荷の総量: $Q_{\mu} > 10000$ p.e.

解析 - 宇宙線ミューオン由来の中性子信号

- ▶ 宇宙線ミューオン由来の中性子信号の探索
 - 宇宙線ミューオンの飛来後、[35,535]µsでGdによる中性子捕獲イベントの 探索を行う
 - •現在のGd濃度 0.011% → 中性子捕獲時定数 ~ 115 µs
 - •~35 µsは除外
 - ミューオンの崩壊電子による信号(~2.2 µs)
 - PMTのアフターパルス(10~20 μs)

解析 - Gdによる中性子捕獲信号

2 光を検出したPMTの数(信号の大きさ): N₅₀

データとMCの比較

→ 20 < N₅₀ < 70の範囲にn-Gdの信号</p>

 $-21 \le N_{50} \le 70$

▶ 位置依存性

①検出器を9つに分割し、各エリアで中性子の信号を観察

11

▶ 位置依存性

② バックグラウンドの除去

• 中性子のイベント数が時定数をもって減少することを利用

Signal part - Background part \rightarrow neutron signal

▶ 位置依存性

③ fittingを行ってエネルギーの値(N_{50})を求める

- Fitting 条件
 - · 関数:ガウス関数
 - 範囲:

[mean - 0.7 * sigma , mean + 1.5 * sigma]

解析 - 中性子信号の安定性

▶ 検出器応答の安定性

期間ごとに検出器を9分割してエリアごとの中性子の反応をみる

- 全体的な傾向として、PMTからの距離によってN₅₀の値が変わる
- - → 補正する手法の開発を目指す

▶ 透過率による影響

▶ 検出器応答の安定性(2020/09/10~2021/08/18)

• エリアごとに多少の差はあるが全体的安定している

まとめと今後の予定

▶ まとめ

- SKにガドリニウムが加えられ、SK-Gd実験が開始した
 - 核破砕中性子を用いたエネルギー較正手法の開発を目指す
 - 検出器応答の安定性を観察
- 核破砕中性子信号の位置依存性と安定性を確認

▶ 今後の予定

- 中性子の生成数やミューオンの種類の違いによる中性子信号を評価
- 他のキャリブレーションソースと比較し評価できる信号の確認
- 引き続き検出器応答の安定性の確認

各低エネルギー較正源の比較

較正源		利点	欠点	
較正実験	Linac	● 単一のエネルギーの電子を入射	 人手がいる 年に1,2回しかデータが取れない 位置が固定される 	
	DT calibration	● Linacよりも位置の自由度が高い ● 比較的少ない人数での作業が可能	 DTG自身がチェレンコフ光の進行 を妨害 電子のエネルギーが単一でない 	
	Ni	● 比較的少ない人数での作業が可能	● 位置が固定される	
宇宙線由来	decay e	● SKタンク全域での検出が可能 ● 全期間での解析が可能	 ・観測する事象数が少ない ・長期の観測時間が必要 	
	¹⁶ N	 SKタンク全域での検出が可能 全期間での解析が可能 Energy sacleの方向依存性の調査が可能 観測する事象数が少ない(1日約 20 事象) 長期の観測時間が必要 		
	Spallation neutron	 SKタンク全域での検出が可能 全期間での解析が可能 事象数が多い (1日約 10⁵ 事象) 	● 光子のエネルギーを検出(電子と 比べると再構成が難しい)	

leff

$$N_{\text{eff}} = \sum_{i=1}^{N_{50}} \left[(X_i - \varepsilon_{\text{tail}}^i - \varepsilon_{\text{dark}}^i) \times \frac{N_{\text{all}}}{N_{\text{alive}}} \times \frac{S(0,0)}{S(\theta_i,\phi_i)} \times \exp\left(\frac{r_i}{L_{\text{eff}}^i}\right) \times \frac{1}{QE_i(1 + C \cdot G_i(t))} \right]$$

- Correction elements
 - X_i : multiple photoelectron
 - . $\varepsilon_{\text{tail}}^i$: delay hit
 - $\varepsilon_{\text{dark}}^i$: dark hit
 - $\frac{N_{\text{all}}}{N_{\text{alive}}}$: the percentage of PMTs that are working properly

 - $S(\theta, \phi)$: photocathode coverage
 - $\exp(r_i/L_{eff}^i)$: attenuation effect by water
 - $1/[QE_i(1 + C \cdot G_i(t))]$: quantum efficiency of PMT

データ取得期間ごとの検出器性能

 スーパーカミオカンデ検出器は1996年4月に開始し、現在までデータ取得期間が6つの フェイズに分かれている

フェイズ	データ取得期間	内水槽 PMT	外水槽 PMT	被覆率	衝撃波防止ケース	エレクトロニクス
SK-I	1996/04 - 2001/07	11,146 本	1,885 本	40~%	なし	ATM
SK-II	$2002/10\!\!-\!\!2005/10$	5,182 本	1,885 本	19~%	あり	ATM
SK-III	2006/07 - 2008/08	11,129 本	1,885 本	40~%	あり	ATM
SK-IV	2008/08 – 2018/05	11,129 本	1,885 本	40~%	あり	QBEE
SK-V	2019/01 – 2020/06	11,129 本	1,885 本	40~%	あり	QBEE
SK-VI	2020/08現在	11,129本	1,885本	40~%	あり	QBEE

• SK-I~SK-V → 純水

• SK-VI \rightarrow Gd (0.011%)