LHC-ATLAS Run3実験に向けた液体アルゴンカロリメータの新型トリガー読み出しシステムのコミッショニング

Commissioning of New Trigger Readout System of Liquid Argon Calorimeter towards the LHC-ATLAS Run3 Experiment

> Jiaqi Zang February 22, 2022

2022/02/22

ICEPP symposium

LHC-ATLAS experiment and phase-I upgrade

- Liquid Argon (LAr) Calorimeter
- Cover the wide range $0 < |\eta| < 4.9$.
- Provide information for level-1 trigger system.
- ndcap-A Barrel-A A side C side LAr hadronic end-cap (HEC calorimeter LAr electromagnet end-cap (EMEC) r hadronic end-cap and LAr electromagneti barrel(EMB) LAr forward (FCal

- Level-1 Trigger system
 - Used for reduce the event rate from 40 MHz to 100 kHz.
 - Use information from both calorimeters and muon detector.
- Phase-I upgrade is performed in the second long shutdown (LS2) from 2019 to 2021.
- Run 3 is scheduled to start in April 2022 at the peak instantaneous luminosity of $3 \times 10^{34} cm^{-2} s^{-1}$ and the c.m. energy $\sqrt{s} = 13.6 \text{ TeV}$ 2022/02/22

Lower events rate with 95% electron efficiency!

LAr phase-I upgrade – new readout system

 New readout system called digital trigger (DT) readout is raised for Run-3.

 The new readout cell, Super Cell (SC) with better granularity and multilayer structure, are used for the L1 trigger system instead of legacy trigger tower.

	laver	Elementary Cen	uigger tower		Super Cell		
	lujei	$\Delta\eta imes\Delta\phi$	$n_\eta \times n_\phi$	$\Delta\eta imes\Delta\phi$	$n_\eta \times n_\phi$	$\Delta\eta imes\Delta\phi$	
0	presampler	0.025×0.1	4×1		4×1	0.1 × 0.1	
1	front	0.003125×0.1	32×1	0.1×0.1	8×1	0.025 imes 0.1	
2	middle	0.025 imes 0.025	4×4	0.1×0.1	1×4	0.025×0.1	
3	back	0.05 imes 0.025	2×4		2×4	0.1 × 0.1	

Granularity of the trigger tower and super cell

2022/02/22

FE and BE Installation

Installation started in Jan. 2019.

FE installation

- 1) Base plane exchange. -> done
- 2) FEB re-installation. -> done
- 3) 124 LTDBs installation. -> done
- 4) Cooling hose replacement. -> done

- BE installation (LATOME-LTDB connections)
 - ➢ Installed at USA-15 counting room.
 - 3 Advanced Telecom Computer Architecture (ATCA) are used to support 30 LAr Carrier (LArC) with 116 LATOMEs in all.
 - \succ ATCA1 \rightarrow done
 - ➢ ATCA2 → done
 - ➢ ATCA3 → done

All installation completed in Sep. 2021!

- Purpose: Issue the triggers in an appropriate state with the new trigger readouts system.
- What are the **basic requirements** for issuing the trigger?

- Purpose: Issue the triggers in an appropriate state with the new trigger readouts system.
- What are the **basic requirements** for issuing the trigger?

Energy reconstruction of 50 GeV inject pulse

• The Energy and pulse phase reconstructed by optimal filtering algorithm in Back-End:

$$E_T = \sum_{i=0}^{3} a_i (S_i - p) \qquad E_T \tau = \sum_{i=0}^{3} b_i (S_i - p)$$

 $a_i, b_i - \text{optimal filtering coefficient (OFC)}$

- Purpose: Issue the triggers in an appropriate state with the new trigger readouts system.
- What are the **basic requirements** for issuing the trigger?

- Purpose: Issue the triggers in an appropriate state with the new trigger readouts system.
- What are the **basic requirements** for issuing the trigger?

Research 1: Connectivity check

Purpose: Provide the correct mapping information of all SCs from detector to Back-End.

Connectivity check – motivation

Connectivity check – validation method (SSW scan)

• Workflow of SSW scan (LTDB by LTDB):

Send pulse to all SCs (up to 320) and control the shaper chip on FEB to switch on the target SC.

Pulse pattern: All channels \rightarrow channel 0 \rightarrow channel 1 ...(repeat for all channels on the LTDB)

Connectivity check – troubleshooting

Connectivity check – auto-processing system and results

- I have developed a robust tool for this connectivity check using SSW scan.
- The tool has been implemented to the LAr calibration system so that anyone can use it.
 - > 99.9% of the 34048 SCs have been validated. (Blue)
 - 1348 swapped channels found and fixed. (Green)
 - 42 problematic channels with above issue are left to be fixed. (Yellow)

Research 2: BCID calibration

Purpose: Adjust the timing of the new Digit Trigger readout.

BCID calibration – motivation

- The BCID of the pulse determines the timing of signal incidence.
- Bunch-crossing identification (BCID) in main readout and DT readout :

• To obtain the timing difference between both readout:

2022/02/22

 $BCID_{offset} = BCID_{LATOME} - BCID_{main}$

BCID calibration – calibration method

- Calibration objective: Set *BCID*_{offset} of all fibers to 0.
- Workflow of calibaration
- The tuning is done fiber by fiber (1 fiber holds up to 8 SCs), not SC by SC. The BCID of SCs on the same fiber may have a difference of ± 1 BC.
- $\circ~$ 4458 output fibers of 116 LATOMEs to be set.
- In order to have a stable result
- \circ Compute the *BCID*_{offset} after taking average samples.
- If the difference between the samples near the crest is within height/10, the previous sample is taken as the peak.

BCID calibration – results

- Runs with all SCs pulsed after calibration
- > Two runs obtained on the same day were used to test the stability of the results.
- \geq BCID_{offset} of almost all fibers are set to 0. Latency fixed.
- > The results of calibration are the same for two runs. **Stability checked**.

- Research 1
 - Connectivity verification framework has been developed. All LTDBs have been checked. 1348 swapped channels are fixed and 42 problematic channels are remained to be fixed.
- Research 2
 - Development of the tool for Timing calibration have done.
 - BCID calibration for SCs are all complete in December 2021. The pulse timing of DT readout is aligned with main readout.
 - Currently developing tools that can monitor the stability of pulsing timing.
- Liquid Argon EM Calorimeter Phase-1 upgrade has been completed. Only fine tuning for the system is remained towards the Run-3 in April 2022.

Thanks for your attention!

BACK UP

Closest calorimeters

EMB

EMEC

٠

٠

٠

٠

Using liquid argon(LAr)

- Linear behaviour •
- Stability ٠
- **Radiation-hardness** ٠

In three cryostats

The precision EM calorimeter

- Accordion structure with several layers
- Three in precision region ($0 < |\eta| < 2.5$)
- Two in the higher eta region (2.5 < $|\eta|$ < 3.2) and overlap region between EMB and EMEC
- FCal provide the EM coverage at $3.1 < |\eta| < 4.9$
- One more presampler layer in the region 0 < |η| 1.8 to measure energy loss in front of the EM calorimeters.

LAr phase-I upgrade – Back-End firmware

- LATOME modules:
- Low-level interface: implement all the FPGA device lps configured in the Quartus tools.
- Input stage: align all 48 input fibers together. \geq
- Configureable remapping: reorder input data according to detector topology.
- User code: computes Et. (develop by \succ UTokyo group)
- Output summing: builds trigger tower \succ energies and transfer to FEX with 48 output fibers.

Embedded chip

Connectivity check – calibration pulse readout path

> Motivation: make all SCs read out signals properly.

Connectivity check – scan validation algorithm

BCID calibration – motivation

 To meet the requirement of the same pulse timing in both readout, *BCID*_{offset} is required by

- In order to determine *BCID_{LATOME}*:
- $BCID_{offset} = BCID_{LATOME} BCID_{main} = 0$ n order to determine $BCID_{LATOME}$:
 Four samples $S_{0,1,2,3}$ are used OF algorithm, where the third
 sample S_2 corresponding to the peak is used to determine the
 pulse timing in DT readout by \succ Four samples $S_{0,1,2,3}$ are used OF algorithm, where the third pulse timing in DT readout by

$$BCID_{LATOME} = BCID_{S_0} = BCID_{S_2} - 2 = BCID_{peak} - 2$$

• Bringing the *BCID_{LATOME}* expression about *BCID*_{peak} into the calculation of *BCID*_{offset}

$$BCID_{offset} = BCID_{peak} - BCID_{main} - 2$$

ICEPP symposium

Analysis with Pilot run data

Purpose: Confirm the new DT readout system is operational and adjustable with real particles.

Analysis with pilot run data – pilot run

- The pilot beams were circulated at LHC in October 2021.
- ➤ Two kinds of runs are performed: <u>splash</u> and <u>collision</u>.
- Splash: The beam hits a collimator located along the beam pipe which is intentionally closed upstream of the detector and create a large shower.

For illuminating all the subdetectors

- Collision run operated with the center-of-mass of 900 GeV.
- LAr calorimeter was fully powered.
- First data-taking with real beam for the new DT trigger.
- FCal was not well calibrated at the time.
- BCID calibration is not fully done at the time, BCID of most fibers are adjusted by hand

Analysis with pilot run data – energy reconstruction

- OFC calibration
 - Done by calibration runs
 - \blacktriangleright Need to be performed after the stable latency is set (BCID calibration)
- Energy and timing reconstructed by LATOME:

Analysis with pilot run data – general check

• Following runs are used for the analysis

Run number	Run type	Start time (CEST)	Stop time (CEST)	Hit / Active SCs
405396	Collision	28/10/2021 22:33	29/10/2021 06:34	15233 / 34019
405495	Splash	29/10/2021 18:30	29/10/2021 22:24	33970/34011
405604	Collision	31/10/2021 18:23	01/11/2021 06:02	11926/32771

• The pedestal and noise of the SCs are obtained by the collision run 405604.

Analysis with pilot run data – Timing check

- *BCID_{offset}* between the DT readout and the main readout is computed to check the pulse timing.
- BCID delay t = $BCID_{offset} \times 25 ns$
- Events with height less than 20 ADC are cut off.

Analysis with pilot run data – Timing check

- Collisions
 - Pulse height cut is 10.
 - > Noise is still considerable due to the low luminosity and low beam energy.
 - \succ Peak samples are around the 3^{rd} , which means the offsets are around -2 BC.

- E_t reconstruction in offline analysis using DT readout raw data (except for FCal):
 - \succ Compute E_T and τ with different BCID.
 - \blacktriangleright Pick the BCID where max E_T matches the min τ . (if no BCID matches then skip)

- E_T distribution constructed with DT readout raw data
 - > 10 luminosity blocks with 20 events are used in the analysis of splash events.
 - > 1 box represents 1 hit SC.
 - > Splash events have more energy deposited than the collision events.
 - More energy deposition in the downstream of the detector for Beam 1 splash.
 Beam direction

• E_T distribution constructed with DT readout raw data

Reconstructed E_T matches well between DT and main readout.

