大面積SOI ピクセル検出器INTPIX を用いた KEK テストビームライン用 高精度トラッキングシステムの構築

。 鈴木尚紀,大森匠,原和彦,武田彩希^c,三住京也^c, 山田美帆^B、坪山透^A, 筑波大学,高エ研^A,産技高専^B,宮崎大学^c

<u>SOIピクセル検出器</u>

SOI (Silicon On Insulator) 技術によりSiO2酸化膜上にトランジスタを形成 読み出し回路一体型の半導体検出器

国内における高エネルギー実験の測定器開発・評価用のGeVオーダー テストビームラインへの需要

→電子ビームライン "KEK AR-TB" が2022年稼働

PF-AR6.5GeV電子ビームから1~5GeV電子ビーム取り出し

高い位置精度で検出器を評価するためのテレスコープが必要 →低多重散乱・微細ピクセル化が可能なSOIピクセル検出器による 高精度テレスコープシステムの開発

本研究での実施内容

目標

- ◆1~5GeV電子ビームにおいて汎用的に使える SOIピクセル検出器高精度テレスコープシステム の開発
- ◆2022年 SOIピクセル検出器 DuTiPのAR-テ ストビームラインでの評価
 - ➡ 10µm程度の位置分解能

<u>飛跡検出器 INTPIX</u>

- ◆17µm×17µmの微細ピクセルサイズ
- ◆大きな有感領域(14mm×9mm)
- ◆13ブロック並列アナログ出力
 - ➡ADCでデジタル変換して読み出し

<u>ELPH 820MeV電子ビームテスト</u>

- ▶ クラスタリング評価・SN評価
- > 飛跡再構成による位置分解能評価
 - ✓ ビーム運動量 820MeV/c (運動量スキャン200~820MeV/c)
 - ✓ 逆バイアス電圧 20V (HVスキャン 1V~100V)

INTPIX4NA

▶ 検出器内での発生電荷は近傍ピクセルに共有される	IP	noise	signal	S/N
≻ 電荷量で重みづけして位置をヒット位置を計算するこ	IP22	1.6	381	237
とで位置分解能が向上	IP12	1.8	339	188
	IP13	1.8	354	188
➡クラスタは6~7px程度に広がる	IP14	1.7	275	156
▶ クラスタ電荷量からSN比を算出	IP15	1.6	382	242

- ▶ 全センサに 1~100Vを印加
 - ✓ クラスタサイズ, 位置分解能, クラスタ電荷量を評価
- ▶ クラスタ電荷量から完全空乏化電圧を評価

•				
4		IP	完全空乏化電圧	[V]
3	50	IP22	26.01	
3 ₩ ₽ 2	250	IP12	30.25	
₩ 2 1	.00 - IP22電荷量[ADC] → IP12電荷量[ADC] 50	IP13	29.16	
1	.00	IP14	38.44	
		IP15	26.01	
	$\sqrt{\text{Vbias}}$			

- ▶ クラスタサイズ >20Vでピーク
 - ✓ <20Vでは空乏層の広がり、>20Vでは電場の強さで収束
 - 分解能については電荷の広がりと相関はあまりない \checkmark
- ▶ 信号量が1/3程度に落ちても位置分解能はほとんど変わらず
 - ✓ 5Vで空乏層厚~130µm, 20Vで空乏層厚~250µm
 - ➡300µより薄くすることで位置分解能を維持しつつ散乱を低減できる

電荷量

GEANT4 シミュレーション

Geant4シミュレーション

- ➤ Geant4では相互作用点でエネルギー計算
- ▶ 電荷の広がりを標準偏差σ_{sim}の2次元ガウス分布で定義

3A [pi

0.25

0.15

1.381e-10/0

 0.5902 ± 0.001

 0.06773 ± 0.02778

11.52 ± 0.02087

Prob

Mean

Sigma

Constant

→そのσをシミュレーション上のパラメータとして指定

▶ 1次元上に射影してガウス関数フィット、σ_{spread}として評価
⇒シミュレーション・ビームテストの結果を比較してσ_{sim}=9µmと設定

Geant4シミュレーション 各運動量の位置分解能評価

- > SN比からノイズを再現し、荷電重心法で位置を計算
- 上流2枚/下流1枚で飛跡再構成 $\sigma_{trk}^2 + \frac{\sigma_{sct}}{P^2}$ でフィット \geq $\sigma_{obs} \sim \gamma$ 散乱の影響 トラッキングの分解能 50 Tracking Residual [μm] 200MeV 45 300MeV 35 30 500MeV 25 20 820MeV IP13-2-1 Geant4 σ_{spread}=9.0μm 15 10 1GeV IP13-2-1Beam Test 5 5GeV 2 Momentum⁻¹ [GeV⁻¹] 120GeV

➢ INTPIXは最高で60µm厚程度まで薄化可能

➡厚みを変えて1~5GeVの結果を予測

運動量 [GeV]	300 <i>μ</i> m厚	130 <i>μ</i> m厚	60 <i>μ</i> m厚
1	8.72 ± 0.09	5.95 ± 0.05	4.76 ± 0.06
2	4.56 ± 0.04	3.23 ± 0.03	3.67 ± 0.04
3	3.07 ± 0.03	2.41 ± 0.02	3.33 ± 0.03
4	2.36 ± 0.02	2.06 ± 0.02	3.31 ± 0.03
5	1.90 ± 0.02	1.83 ± 0.01	3.36 ± 0.03

✓ 薄すぎると信号量が落ちて位置分解能が劣化する

✓ 130µm厚程度がベストか?→今後センサ薄化して試験5

➢ KEK AR-TB用にSOIピクセル検出器を用いた高精度・低多重散乱のテレスコープを構築

- ➤ ELPHを用いたビームテストによる性能検証
 - ✓ 位置分解能評価(運動量スキャン、HVスキャン)
 - ✓ 位置分解能~11umが得られた

- ➤ Geant4でのシミュレーション
 - ✓ 1~5GeVにおける位置分解能予測 1.9~3.3µm @5GeV
 - ✓ 今後薄化したセンサで試験を行う

Back up

<u>AR-TB ビーム情報</u>

Momentum [GeV/c]

- ◆ ROIで読み出し領域を選択可能
 - 512px * 512px(40Hz) ~ 64px*64px(400Hz)
- ◆ KEK AR-TBではチップサイズ辺り200~300Hzのイベントが予測される
 - ▶ 読み出しビット数の削減・ゼロサプレッションの開発

INTPIX4NAの空乏層厚

- ▶ 抵抗率(10.1~12.1kΩcm)から計算したINTPIX4NAの空乏層厚
- > 7kΩcmはINTPIX4の推定抵抗値(2019年ビームテストより)

逆バイアス [V]	空乏層幅 MIN [μm]	空乏層幅 MAX [μm]	7kΩcm換算 [μm]
0	35.4	38.7	29.4
5	125.0	136.8	104.0
10	173.2	189.5	144.2
15	210.6	230.5	175.3
20	242.3	265.2	201.7
25	270.3	295.9	225.1
30	295.7	323.7	246.2
35	319.1	349.2	265.6
40	340.9	373.1	283.8
45	361.3	395.5	300.8
50	380.7	416.7	316.9
55	399.1	436.8	332.3
60	416.7	456.1	346.9
65	433.6	474.6	361.0
70	449.9	492.4	374.5
75	465.6	509.6	387.6
80	480.7	526.2	400.2
85	495.5	542.3	412.5
90	509.7	557.9	424.4
95	523.6	573.2	435.9
100	537.2	588.0	447.2
105	550.4	602.4	458.2
110	563.3	616.6	469.0
115	575.9	630.4	479.4
120	588.3	643.9	489.7
125	600.3	657.1	499.8
130	612.2	670.1	509.6
135	623.8	682.8	519.3
140	635.2	695.3	528.8
145	646.4	/0/.5	538.2
150	657.4	/19.6	547.3
155	670.0	742.1	550.4
160	676.9	743.1	505.2
105	089.4 600.8	754.0	574.0
170	710.0	705.9	582.0
1/5	710.0	789.1	591.1
100	720.0	702.0	599.4 607.7
100	720.7	196.9	615.9
190	740.4	009.0	622.9
200	759.0	020.2	621 9
200	100.9	030.0	031.8

21

<u>ELPHビームテスト e⁺ビームセッティング、プロファイル</u>

➤ ビームターゲット:W (タングステン)

XRPIX5で確認したビームプロファイル

<u>INTPIX4 回路・ロジック</u>

