GRAMS実験に向けたLArTPCによる 反粒子同定手法の検証

ICEPP シンポジウム 早稲田大学 修士1年 2022/2/21 中曽根太地

Introduction

・<u>GRAMS(Gamma Ray and Anti Matter Survey)実験</u>

-MeVガンマ線観測 (重元素合成解明のための核ガンマ線観測等) -**宇宙反粒子探索 (暗黒物質の間接探索)**

- ・検出器
 - -ToF : 粒子速度
 -LArTPC: エネルギーと飛跡を測定
 -磁場 : なし
- ・将来的に南極周回軌道で30日程度の気球実験→衛星実験
- ・<u>今後数年での早稲田大学での動向</u>
 -気球工学試験
 -J-PARCでのビーム試験
 (反粒子捕獲事象の検証)

・本講演

反陽子(反重陽子)ビーム試験に向けたSimulationによる検出器サイズ&ビームエネルギーの最適化

反陽子(反重陽子)ビームテスト計画

→反陽子(反重陽子)ビームを用いた捕獲事象の検証が必要

2022/2/19

Test Beam at J-PARC(K1.1BR) in 2010arXiv:1105.5818(T-32 Experiment)K1.1 BR Beamline

Primary Beamline

・P->K v 崩壊による~340MeV/cのK粒子探索を
 目的としたLArTPCの性能評価試験(早稲田&KEK)

・使用ビーム 200~800MeV/c (Well defined particles(K⁺, π⁺, p, e)) ・検出器

250L detector (LArTPCサイズ: 40cm×40cm×80cm)

250L Detector(T32 Experiment)

Data Taking

Oct/2010 Run: Data Taking

- 2010, Oct/6-23
 - Preparation at K1.1Br
- Oct/24
 - LAr Filling
 - achieved ~0.5 ppb LAr purity
- Oct/25-Oct/31
 Data acquisition

	Even	it Category		N	o. of events	
	\mathbf{K}^+	800 MeV/c with deg	7,000			
	\mathbf{K}^+	800 MeV/c with deg	40,000		N. Err	
	\mathbf{K}^+	800 MeV/c with de	35,000		W. Jon	
T	π^+	200 MeV/c	00 MeV/c			and the second s
	e^+	800 MeV/c	数時間で取得した	K+	2,500	
	Р	800 MeV/c	「気い的でないのので」 デーク号	ι λ	1,500	U.S.
	e^+	200 MeV/c	/ / / 里		10,000	The
	$\pi^+ d$	lominant 800 MeV/c	~ 3,000			
	total				~170,000	101

2010年J-PARCビームテスト(T-32実験)
 ・LArTPCによる電子読み出し手法の確立
 ・1時間で1万eventのK⁺のデータ取得に成功

反陽子生成量(CRMC1.8.0(EPOS-LHC))

- ・Cosmic Ray Monte Carlo packageを使用 https://web.ikp.kit.edu/rulrich/crmc.html
- ・30GeV陽子を金ターゲットに衝突させた時の反陽子生成量をプロット
- ・<u>800MeV/cのK⁺Event数=1万Event/h</u> at J-PARC

① K^+ のEvent数を1万Eventヘスケール ②反陽子についても K^+ のスケールファクター をかける。

・反陽子の生成は高運動領域で起こる
 特に反陽子≥20~30Event/h @800MeV/c

Geant4 Simulation

- ◆ 反陽子捕獲事象を捉える一番最適な検出器サイズ をSimulationにより検証する
- ・シミュレーションツールキット
 -GEANT4 ver.4.10.07
- Detector Construction

 -LArTPC: 30cm×30cm×60cm
 -Degrader: 30cm×12cm×12cm
 (鉛ガラス,密度5.20[g/cm³],Cerenkov光検出器)
- ・**使用ビーム** 反陽子
- ・鉛ガラス(KEKから4個譲渡して頂いた)
 :30cm×12cm×12cm(1module)

2022/2/19

反陽子が液体アルゴンでCaptureされる確率

反陽子が液体アルゴンでCaptureされる確率

- ・CRMC (EPOS-LHC)の反陽子生成量結果と反陽子捕獲割合の結果の積を取ることでBeam試験 における反陽子捕獲事象のRate(Event/h)を算出
- ・鉛ガラス(degrader)の厚みを0cm, 12cm, 24cmと変化させ最適な鉛ガラスの厚さを検証した
 2022/2/19

LArTPC内で反陽子捕獲が起こる確率

使用検討中のJ-PARC(K1.8BR)最大ビーム運動量:1.1GeV/c

・鉛degraderを厚くすることで高運動量の反陽子を6event/h以上で捕獲可能 ・800MeV/c程度の入射反陽子エネルギーを用いるのが最もRateが高い

2022/2/19

反陽子Stopping Point

◆ 信号の取得に際し、捕獲事象後のハドロンが等方に 放射されることなどから検出器中央で反陽子を止め ることを考える

1000

 χ^2 / ndf

入射エネルギー800MeV/c

Penetration Length(LAr) VS Kinetic Energy

3.635 / 1

最も取得効率の高い800MeV/c付近の反陽子は50cmで止まるため、最適な液体アルゴンの奥行きは100cm →真空断熱容器の大きさの制限などから、degraderが必要

- ・K1.8BRの使用をKEK/JPARCの方と協議中
- ・30cm×30cm×30cmのTPCサイズを1台または2台並べて反陽子捕獲事象を検証

まとめ

<u>まとめ</u>

- ・早稲田においては2010年J-PARCでのLArTPCでの実機経験があり、TPCでの読出しの手法は ほぼ確立されている
- ・CRMCとGEANT4Simulationの結果より最適な入射反陽子のエネルギーは800MeV/cであると 考えられる
- ・現在Simulationの結果より、検出器の大きさはそれぞれ
 LArTPC : 30cm×30cm×60cm
 鉛ガラス: 30cm×12cm×12cm
 が良いと考えられるが今後も継続して最適な大きさを議論し、決めていく

<u>今後の展望</u>

・KEK/JPARCの方と加速器試験実施について協議中であり、反陽子は可能なことを確認 (反重陽子は要検討)。

現在、JPARCでのテスト実験に向けて、プロポーザルを準備中。

・早稲田LArテストスタンドによる宇宙線ミュー粒子捕獲事象の測定(TPCの試験)
 2022/2/19

Degrader performance

検出器セットアップ案(preliminary)

- ・30cm×30cm×30cmのTPCサイズを1台または2台並べて反陽子捕獲事象を検証
- ・電子読み出しに重きを置いた検出器を設計

GRAMS実験

◆ GRAMS(Gamma Ray and Anti Matter Survey)実験物理目標 -MeVガンマ線観測(重元素合成プロセスの解明)

-宇宙反粒子探索(暗黒物質の間接探索)

◆ 宇宙反粒子探索

-反重陽子探索についてはBESS実験がLIMITを引いている 低エネルギー(~0.2GeV/n)の反重陽子は星間物質との相互作用で 生成されるFluxよりも暗黒物質起因のFluxの割合が2桁程度大きい

→信号領域で検出できれば新物理の強い証拠

GRAMS検出器

◆GRAMS実験検出器

LArTPCをToF2層で囲む構造 先行実験GAPS(General Anti-Particle Survey)の手法を採用→

- **ToF**: 粒子速度
- LArTPC:エネルギーと飛跡を測定
- •磁場:なし (反粒子信号として原子核捕獲事象を用いる)

反陽子がCaptureされる確率

LArThickness VS Pbar_CaptureRate

・鉛ガラスを置く前後で反陽子が捕獲される確率は変わらない

2022/2/19

先行研究(GAPS実験)

- ◆ セグメント化された多層Si検出器とTOFに よる**特性X線や対消滅後のHadron**の検出 に特化した反重陽子探索実験
- ◆ 反陽子の捕獲によるX線に関してはKEKのビームテストで 確認されている(原子核捕獲事象の有力な証明の一つ)

GAPS検出器概要 (T. Aramaki, Astroparticle Physics 49 (2013) 52–62)

多重ハドロン生成

GEANT4で原子核捕獲事象に使われるモデル(FTF(Fritiof) model)

Vladimir UZHINSKY, Development of the Fritiof Model in Geant4, October 17-21, 2010

但し, $\pi^{\pm}p, K^{\pm}p, pp, p\bar{p}$ の相互作用による粒子の生成を前提としたモデルのため, FTFモデルを用いたGEANT4による反重陽子の原子核捕獲事象の妥当性は自明ではない

GEANT4 Event Log

◆粒子の反応座標, Kinetic Energy, Deposit Energy, ステップサイズ, 反応事象名の詳細

****	********	******	*******	******	*****	<*************************************			
* G4T ****	rack Inform	ation: P	article = ar *******	nti_deutero *******	on, Track ID = 1, **************	, Parent ID = 0			
Step#	X(mm)	Y(mm)	Z(mm) K	inE(MeV)	dE(MeV) StepLeng	ig TrackLeng NextVolume ProcName			
Ó	Û Û	Û	Ò	1	0 0	0 0 World initStep			
1	0	0	0.0359	0	1 0.0363	3 0.0359 Detector hIoni			
2	0	0	0.0359	0	0 0	0 0.0359 Detector hFritiofCaptureAtRest			
: List of 2ndaries - #SpawnInStep= 15(Rest=15,Along= 0,Post= 0), #SpawnTotal= 15									
:	0	0	0.0359	0.00464	e- 🗖				
:	0	0	0.0359	0.0521	gamma				
:	0	0	0.0359	0.0442	gamma				
:	0	0	0.0359	0.126	e-	FritiofモナルによりAnti-deuteronが原子に捕獲			
:	0	0	0.0359	0.626	gamma	されたという情報			
:	0	0	0.0359	38.9	eta_prime				
:	0	0	0.0359	71	kaon+				
:	0	0	0.0359	188	pi0	エキゾチック原子の脱励記 対消滅で生じた			
:	0	0	0.0359	64.2	kaon-				
:	0	0	0.0359	37.9	pi+	2次粒子			
:	0	0	0.0359	43.2	pi0				
:	0	0	0.0359	237	pi0				
:	0	0	0.0359	185	pi+	→これらの粒子の数。エネルギーの特徴を調べる			
:	0	0	0.0359	96.7	pi-				
:	0	0	0.0359	0.585	S38 -				
:					End	ndOf2ndaries Info			

GEANT4 Event Display

GEANT4上での反重陽子1Event 原子核捕獲事象後の2次粒子の飛跡

> 赤:負電荷粒子 π⁻,*e*⁻,*d*,*p* 青:正電荷粒子 π⁺,*e*⁺ 緑:中性粒子 γ,n

特性X線のSimulation

◆ デフォルト設定では反陽子, 反重陽子のX線のエネルギー はmuonic atomのものとし て放出される	遷移ごとのエネルギー (μ) $E_{2,3}$ $E_{3,4}$ $E_{4,5}$	エネルギー (KeV) 126 44 20	遷移ごとのエネルギー (反重陽子)	エネルギー (KeV) 187 114 74 50	遷移ごとのエネルギー (反陽子)	エネルギー (KeV) 176 97 58
Anti Deuteron $ \frac{44 \text{KeV}}{20 \text{KeV}} + \frac{126 \text{KeV}}{44 \text{KeV}} + \frac{126 \text{KeV}}{4000} + \frac{126 \text{KeV}}{10000} + $	Anti Proton 126KeV 120KeV 1	Anti Proton Entries 754971 Mean 35.97 Std Dev 46.98	D.2 0.15 0.15 0.05 0.05	74(K 58(KeV) (KeV)/	Anti Deuteron Anti Proton 1 eV) 97(KeV) 114(KeV) 100 150	76(KeV) 187(KeV)
→ソースコートG4EmCapture(Jascade() IVIass /	と <i>L</i> 粒子から			Kinetic Energ	y (KeV)

◆ 理論式に従うエネルギー分布を実装

反陽子,反重陽子のものへ変換