高い時間分解能と位置分解能を併せ持つ 新型LGAD検出器(AC-LGAD)の研究開発

筑波大学 素粒子実験研究室

<u>M1 北 彩友海</u>

植田樹, 五屋郁美, 中村浩二(KEK), 原和彦

将来の加速器実験:高輝度化

30psの時間分解能をもつ半導体飛跡検出器 || 光速の荷電粒子の1cmの区別がつけられる!

30psの時間分解能

- ✓ Fakeトラックを除ける
- ✓ 別衝突点からのトラックを区別できる

O(10um)の高い位置分解能 ✓ より精密な粒子の 飛跡再構成&運動量測定

高い放射線耐性 ' (1x10¹⁶n_{eq}/cm²)

* 将来の加速器実験には、

高い時間+位置分解能+高い放射線耐性を併せ持つ新型シリコン飛跡検出器が必要!

Low-Gain Avalanche Diode 検出器

センサー表面

最適化が必要な条件と試作サンプル

実験室測定セットアップ

2/20/2022

28th ICEPPsymposium

信号の大きさとクロストークの大きさ

Strip sensor

信号の大きさとクロストークの大きさ

Strip sensor

時間分解能測定

28th ICEPPsymposium

位置分解能測定(テストビーム)

放射線耐性

<u>陽子線照射@CYRIC(東北大)</u>

- ✓ 70MeV陽子 1x10¹⁴ n_{eq}/cm², 5x10¹⁴ n_{eq}/cm²
- ✓ センサー : Pad B3

10⁻² 10⁻³ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻⁴ 10⁻ 200⁻ 300⁻ 300⁻ 300⁻

照射量が上がると電子雪崩の

800

Bias Voltage [V]

起こる電圧が上がる

Pad sensor

✓ 照射量の増加でp+濃度の減少 →運転電圧の上昇

ad/B-3/-20degC/non-irrac

ad/B-3/-20deaC/1e

700

✓ 高電圧によりスパーク

600

 $5 imes 10^{14} n_{eq}/cm^2$

✓ 照射量が増加しても運転電圧が上がら ないような工夫が必要…

内部飛跡検出器として使うには 放射線耐性の改良が必要

28th ICEPPsymposium

IV curve

10-1

non-

10 - irradiation

 $1 \times 10^{14} n_{eq}/cm^2$

400

500

Current [uA]

まとめ

高い空間・時間分解能を併せ持つ検出器であるLGAD検出器の開発をしている

信号の不感領域のない新型のAC-LGADを試作した。

Strip sensor Signal size and crosstalk measurement To check new prototypes \rightarrow Tested using ⁹⁰Sr beta-ray source Distance of 1/e pulse Crosstalk measurement Signal size measurement height from leading strip

Pixel sensor measurement

To reduce pile up effect, developing pixel sensor !

E-b type (high resistivity, high coupling capacitance)

Pulse shape

- To make larger signal size : larger R_{imp} and C_{cp}
 - ✓ R_{imp} : not possible to make higher (limitation of Foundry process)
 - \checkmark C_{cp} : possible to make larger

\rightarrow <u>Next prototype</u>

Make oxide thickness thinner (make Ccp larger)

Testbeam at ELPH

Purpose

- ✓ evaluate efficiency and timing resolution
- check position resolution (and crosstalk)
- > Research center for ELectron PHoton science in Tohoku university (July 5th-9th)

Efficiency (testbeam)

To check expected 100% of efficiency

Testbeam at ELPH (Tohoku University)

- ✓ Sensor : Strip E-b
- Bias voltage : 170V \checkmark

✓ channel : 9~15ch

threshold 14mV

Efficiency was 94.5+-0.6% at 14mV threshold

IEEE 2021

Strip sensor

Efficiency (Pad E-b type)

> Efficiency

Radiation tolerance (TID)

2/20/2022

IEEE 2021

Lab measurement setup and sensors

IEEE 2021

Signal size analysis

> Analysis

Noise

✓ Fit Off-timing pulse distribution by asymmetric gaussian function

□ Signal

- ✓ Fit On-timing pulse height distribution by Gaussian convoluted Landau function plus function of noise
- ✓ Signal MPV will be used to compare the signal pulse height size.

max pulse height distribution at on-timing

How to define operation voltage

✓ Example : E-b strip voltage scan

Pulse Height [V]

Testbeam @ FNAL

Fermilab Test Beam Facility (FTBF) : 120GeV proton beam

Efficiency of C2

Some issues

Investigation of bias resister issue (non-irradiation)
What is the signal leak from the other side of strips?

Sparked sensor (irradiated)

spark

- 2. Voltage drop by Poly-Silicon resistivity
- Voltage difference between AC elec. and n++ ring (DC ring)
 → Spark

2/20/2022

IEEE 2021

0

TCAD Simulation and Actual Measurement

2/20/2022

C2とEbで時間分解能のvoltage scan 前回:Fitするには少なくとも200run必要だった→100run追加、200run分データをとった

fake noise rateを関数から求めた

