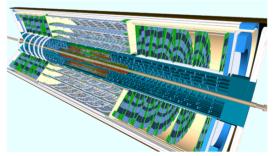
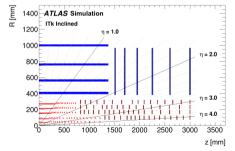


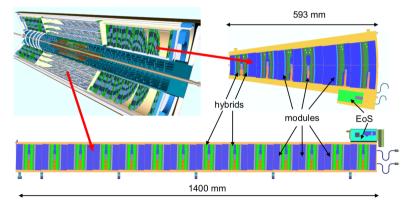
Radial strip detectors in Allpix²

3rd Allpix² User Workshop


Radek Privara
Palacky University Olomouc
(radek.privara@cern.ch)


ATLAS ITk Strip detector

- ATLAS Inner Tracker (ITk) is the innermost (future) part of the ATLAS Detector.
- Critical for particle track and vertex reconstruction.
- Divided into two regions barrel and end-cap.
- Utilizes two types of detectors ITk Pixel and ITk Strip segments.


ATLAS ITk visualization.

ATLAS ITk layout: pixel modules in red, strip modules in blue.

- Barrel and end-cap strip modules differ in size and shape.
 - o Barrel modules are rectangular and placed on "staves."
 - End-cap modules are trapezoidal, have various shapes (R0–R5) to fit onto a "petal."

Barrel and end-cap regions of the ITk. Barrel modules on a stave, end-cap modules on a petal.

ITk Barrel modules

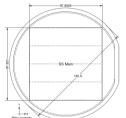


Fig.2 Barrel wafer layout: Short-strip (SS)

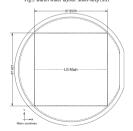


Fig.3 Barrel wafer layout: Long-strip (LS)

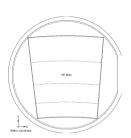


Fig.4 Endcap wafer layout: R0

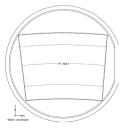


Fig.5 Endcap wafer layout: R1

ITk End-cap modules

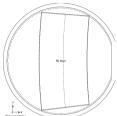


Fig.6 Endcap wafer layout: R2

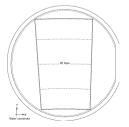


Fig.7 Endcap wafer layout: R3

Fig.8 Endcap wafer layout: R4

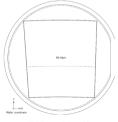
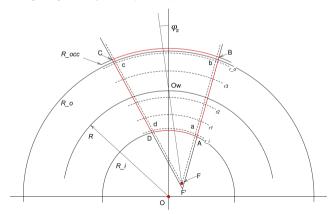
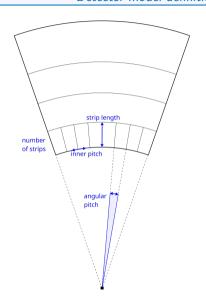



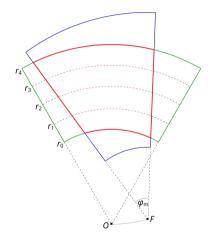
Fig.9 Endcap wafer layout: R5

- ATLAS ITk end-cap sensors feature the stereo angle: Strips do not point to the sensor origin O, but to a focus F. Point F is obtained by rotating point O around the sensor center Ow by the stereo angle φ_s .
- Critical for tracking performance of double-sided modules.
- \bullet Stereo angle is 20 mrad (1.15°) for every ITk strip end-cap sensor.

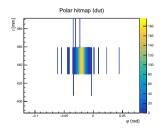
Radial strip detectors in Allpix^2

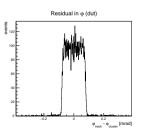

- Barrel strip detectors could be simulated, but radial end-cap ones couldn't be.
- ⇒ Limited scope of simulation studies of the ITk.
- Implementation of radial strip detectors via a new detector model class.
 - o Fully functional, merged into master branch.
 - o Example simulations included.
 - o Documentation in an internal ATLAS note (CDS link).

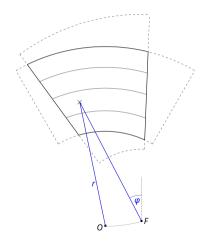
- Radial detector models defined using 4 parameters for every strip row:
 - o number of strips,
 - o angular pitch,
 - o inner pitch,
 - o strip length.
- Model type defined as "radial_strip".
- Optional definition of the stereo angle.
- Models of all ITk strip end-cap detectors created and can be used out-of-the-box.


ATLAS ITk R0 model definition:

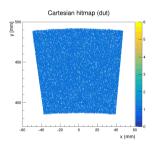
```
type = "radial_strip"
number_of_strips = 1026, 1026, 1154, 1154
angular_pitch = 0.193mrad, 0.193mrad, 0.171mrad, 0.171mrad
inner_pitch = 74.4um, 78.1um, 73.6um, 78.5um
strip_length = 19mm, 24mm, 29mm, 32mm
stereo_angle = 20mrad
sensor_thickness = 300um
```

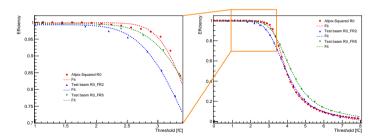




- Sensor geometry corresponds to the ITk strip end-cap design.
- Stereo angle properly reflected in the sensor shape.
- Sensor volume obtained as the intersection of two curved trapezoids:
 - One with proper radial dimensions and origin in *O* defines strip rows.
 - One with proper angular dimensions and origin in F.
 - ⇒ Resulting shape has the proper radial and angular dimensions.

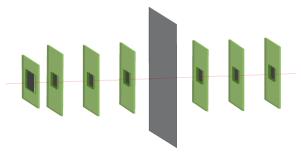


- Very beneficial to work in polar coordinates due to the sensor shape
- Stereo angle-related adjustments are necessary.
- Hit positions processing in polar coordinates $[r, \varphi]$ where
 - o radial component r is measured from origin O,
 - o angular component φ measured from focus F.
- Additional outputs and plots added to the framework (polar hitmap, r and φ residuals).





- Initial simulation with a large-diameter flat beam to map the detector geometry and test outputs.
 - Hitmap shows the correct skewed detector shape.
- Test-beam-like simulation with 5 GeV electron beam, comparison with available test beam data 1.
 - o Comparison of detection efficiency as a function of charge threshold.
 - o Agreement within variance due to different ASIC calibrations typically seen during TB measurements.



¹The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

- Finished implementation is already being used for further studies.
- Full test beam simulation.
 - o Proper detector setup with a telescope and a timing plane.
 - o Track reconstruction and analysis using the Corryvreckan framework.
 - o Comparison to additional test beam outputs.
 - o Further validation of the implementation.
- ITk Strip end-cap System Test.

- Allpix² has been used for performance studies of ATLAS ITk strip modules.
- Great agreement of simulation results with prototype measurements.
- Simulations of radial end-cap strip detectors are now also possible.
 - o Results in reasonable agreement with TB data.
- Implementation of radial detectors is already being used in other simulation studies.