

Search for VV resonances with the ATLAS detector at the LHC

Yassine El Ghazali Supervised by Mohamed Gouighri

Ibn-Tofail University in Kenitra and CERN

ASFAP Particle Physics Day - PhD and postdocs day May 27, 2022

Introduction

- Several Standard Model extensions predict the existence of heavy diboson resonances:
 - Extended Higgs/Gauge sectors, Quantum Gravity.
- Look for resonances decaying into different pairing of W or Z in semileptonic final states

DY

- One boson decays to lepton (Clean signature)
- The other boson decays hadronically (High branching ratio)
- Several production modes are considered

ggF

Gluon-Gluon Fusion (ggF), Drell-Yan (DY) and Vector Boson Fusion (VBF)

Yassine El Ghazali (Kenitra, CERN)

VBF

2/14

Analysis Overview

- Look for a bump in invariant mass spectra in the top of a smoothly falling background
- 3 leptonic channels according to the number of charged leptons
 - ▶ 0-lep: $ZV \rightarrow \nu \nu qq$
 - ▶ 1-lep: $WV \rightarrow l\nu qq$
 - ▶ 2-lep: $ZV \rightarrow llqq$
- 2 Event topologies:
 - \blacktriangleright Resolved: $V \rightarrow qq$ are reconstructed by 2 Small-R calo jets
 - \blacktriangleright Merged: $V \rightarrow qq$ are reconstructed by 1 Large-R jet

increasing momentum

Search for VV resonances with ATLAS

3/14

Event selections and regions in $\boldsymbol{V}\boldsymbol{V}$

- 1 SR and 3 CRs to constrain W+jets (WCR), Z+jets (ZCR) and $t\bar{t}$ (TCR)
 - SR: Mass window with no Extra *b*-*jets*
 - VCR: Sidebands with no Extra *b*-jets
 - TCR: Mass window with Extra *b*-*jets*
- In Merged each region is further split into:
 - High purity (HP) (Pass D_2)
 - Low purity (LP) (Fail D_2)

Mass window

Merged

 m_J is p_T -dependent cut

Resolved

 $\begin{array}{ll} W \rightarrow jj: \ 62 < m_{jj} < 97 \ {\rm GeV} \\ F \ Z \rightarrow jj: \ 70 < m_{jj} < 105 \ {\rm GeV} \end{array}$

Yassine El Ghazali (Kenitra, CERN)

		0 lanton	1 Janton	2 Janton
	Event selection	0-iepton	T-lepton	2-lepton
		$(ZV \rightarrow vvV_h)$	$(WV \rightarrow \ell \nu V_h)$	$(ZV \rightarrow \ell \ell V_h)$
		No Loose lepton	1 Tight electron	2 Loose leptons
		$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$	or 1 Medium muon	with $p_T^{\ell} > 30 \text{ GeV}$
	V_{ℓ} selection	$p_{\rm T}^{\rm miss} > 50 {\rm GeV}$	with $p_T^{\ell} > 30 \text{ GeV}$	from the
			$E_{\rm T}^{\rm miss} > 60 {\rm ~GeV}$	$Z \rightarrow \ell \ell$ candidate
			$p_T^{V_\ell} > 75 \text{ GeV}$	
	Event veto	No additional Loose leptons		
		Veto events with <i>b</i> -jets not associated with the $Z \rightarrow qq$ candidate		
	Event categorisation	≥ 1 large-R jets or ≥ 2 small-R jets		
		VBF and ggF/DY classification according to RNN score		
			$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$	
h	V _h selection (Merged)		$p_T^{V_\ell} > 200 \text{ GeV}$	
ł		≥ 1 large-R jets		
1		The leading jet passing $p_{\rm T}$ -dependent m_J requirement		
1			$\Re_{p_{\rm T}/m} > 0.35 ({\rm ggF/DY})$	$\mathcal{R}_{p_{\rm T}/m} > 0.35 ({\rm ggF/DY})$
1			$\Re_{p_{\rm T}/m} > 0.25 ({\rm VBF})$	$\Re_{p_{\rm T}/m} > 0.25 ({\rm VBF})$
1			Failed merged selection	
1	V _h selection (Resolved)		≥ 2 small- <i>R</i> jets with $ \eta < 2.5$	
1		Not	$62 < m_{jj} < 97$ GeV for $W \rightarrow jj$	
1		Performed	$70 < m_{jj} < 105 \text{ GeV for } Z \rightarrow jj$	
1			$\mathcal{R}_{p_{\rm T}/m} > 0.35 ({\rm ggF/DY})$	$\mathcal{R}_{p_{\rm T}/m} > 0.35 ({\rm ggF/DY})$
1			$\mathcal{R}_{p_{\rm T}/m} > 0.25 \; ({\rm VBF})$	$R_{p_{\rm T}/m} > 0.35 ({\rm VBF})$
- 8				

Search for VV resonances with ATLAS

Background modeling

- Main backgrounds: V+jets and $t\bar{t}$
 - Use data from control regions to constraint normalization
- Minor backgrounds: Single top and SM Diboson
 - Normalized to their theoretical cross section
- Multi jet QCD background (only in resolved 1-lep)
 - Modeled using a Data-driven method
 - Derive MJ shape for a MJ-enriched region
 - \blacktriangleright Obtain normalization from fit on E_T^{miss} distribution in WCR

$W\!/Z$ tagger with TCC jets

- Design a W/Z tagger based on TrackCaloClusters (TCCs) to reconstruct Large-R jet
- Optimize W/Z tagger working points with m_J and D_2
- Brought 30% improvements wrt the past round

VBF-to-ggF classification with machine learning

- Use a Recurrent Neural Network (RNN) to classify ggF/DY and VBF event topologies.
- RNN uses as inputs Small-R jets 4-momenta (p_T , η , ϕ and E), Excluding those from V^{had}
- Events with score > 0.8 are considered as VBF events
- RNN recovers 30% of VBF events

Yassine El Ghazali (Kenitra, CERN)

Analysis Flow

Yassine El Ghazali (Kenitra, CERN)

Search for VV resonances with ATLAS

3

Signal Efficiency \times Acceptance

m(VV) distribution

• Transverse mass is defined as

0-lep

$$m_T = \sqrt{(p_T^J + E_T^{miss})^2 - (\vec{p}_T^J + \vec{E}_T^{miss})^2}$$

1-lep

2-lep

Yassine El Ghazali (Kenitra, CERN)

Search for VV resonances with ATLAS

э

Upper Limits

- Data are found to be in good agreement with SM expectations
- 95% CL Upper limits on $\sigma \to X \to VV$ in the mass range [300, 5000] GeV are set

11/14

- A search for diboson resonances in semileptonic final states has been performed using full Run-2 data collected with ATLAS detector at $\sqrt{s} = 13$ TeV
- No significant excess of events is observed above the SM predictions
- Upper Limits on the production cross section have been set on several benchmark models
- Up to 500% improvements in the limits wrt 36 fb $^{-1}$ result

Backup

Yassine El Ghazali (Kenitra, CERN)

Search for VV resonances with ATLAS

13/14

э

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Substructure variable D_2

The variable D_2 is defined as

$$D_2^{(\beta=1)} = E_{CF3} \left(\frac{E_{CF1}}{E_{CF2}}\right)^3$$

where the energy correlation functions (E_{CF}) are defined as:

$$E_{CF1} = \sum_{i} p_{T,i}$$

$$E_{CF2} = \sum_{ij} p_{T,i} p_{T,j} \Delta R_{i,j}$$

$$E_{CF3} = \sum_{ijk} p_{T,i} p_{T,j} p_{T,k} \Delta R_{i,j} \Delta R_{j,k} \Delta R_{k,i}$$

Yassine El Ghazali (Kenitra, CERN)

Image: A math a math