

Research progress and plans

Toshi SUMIDA (CERN-Japan fellow, PH-ADE-CA)

14th Dec. 2010 CERN-KEK Committee, 5th meeting

Outline

- Work progress
 - 10.2008 3.2010
 - ATLAS TileCal EM scale calibration
 - performance using cosmic rays
 - 4.2010 now
 - Jet performance study
 - Cleaning
 - Data preparation with new calibration
 - Jet energy scale uncertainty
 - Pile-up
 - Jet inclusive cross section measurement
- Summary and future plans

ATLAS Tile (

end-cap (HEC) file extended barre LAr electromagnetic LAr hadronic end-cap (HEC end-cap (EMEC) LAr electromagnet end-cap (EMEC) -Photomultiplier LAr ele Wavelength-shifting fibre barrel LAr forward (FCal) Scintillator Steel Source tuhes η=0,0 0.1 0,2 0,3 0,5 0,6 0,7 0.8 0.4 3865 mm 1.3 D3 D2 D0 D1 D4 BC2 BC3 BC4 BC5 BC6 /BC7 BC8 BC1 _ 1,4 B15 - 1.5 B12 B13 B14 B11 B9 ^{-1.6} A12 A13 Á14 A1 / A2 A3 / A4 / A5 / A6 / A7 / A8 Á15 🦯 A16_ -∕ A9 E2 2280 mm 500 1000 1500 mm E3 E4 beam axis

- Hadronic calorimeter
 - Flat iron absorbers + scintillator tiles
 - |η| < 1.7
 - Long Barrel: |η| < 1.0
 - Extended Barrel: 0.8< |η| < 1.7
- Goal
 - σE/E (jet) = ~50%/√E⊕3% (TDR)
 - Jet energy scale uncertainly: I-2%
- Geometry
 - Length
 - LB: 5.8m, EB: 2.6m
 - Radius
 - Inner: 2.28m, Outer: 4.25m
 7.4λ
- Granularity
 - 64 modules in each barrel
 - $\Delta \phi \sim 0.1 \text{ rad}$
 - 3 layers
 - ► A, BC, D: "Cells"
 - "Tower"
 - Δη = 0.1 for A and BC cells
 0.2 for D cells
 - ~5000 cells

Toshi SUMIDA

TileCal EM calibration

- EM calibration
 - Basic calibration/monitoring method
 - Cs system
 - works well
 - correction from decay curve
- Validation with cosmic rays
 - dE/dx from mean value provide well-defined signal in data/MC comparisons
 - response compared to noise
 - with the Landau⊗Gauss peak position
 - S/N = 29 for total response
 - S/N = 16 for D-cells

Results on the TileCal's "readiness"

- TileCal EM calibration
 - Validated in cosmic rays measurement
 - Comparison with the TestBeam result
 - Results
 - Truncated mean & Landau distribution
 - $dE/dx \sim 1.3 MeV/mm$
 - Energy scale uncertainty
 - ⁻ Long Barrel (LB, central region) : 2-4%
 - Extended Barrel (EB, outer region) : 3-4%
- Results published
 - "Readiness of the ATLAS Tile Calorimeter for LHC collisions"
 - arXiv:1007.5423, CERN-PH-EP-2010-024

Radial layer		A	BC	D
Cosmic muons, LB	Data	$1.28\substack{+0.03\\-0.04}$	1.32 ± 0.05	1.35 ± 0.04
	MC	1.32 ± 0.04	1.35 ± 0.05	1.34 ± 0.04
	Data/MC	$0.97\substack{+0.01\\-0.02}$	0.98 ± 0.02	1.01 ± 0.01
Cosmic muons, EB	Data	1.27 ± 0.06	1.29 ± 0.06	1.32 ± 0.05
	MC	1.31 ± 0.03	1.32 ± 0.06	1.34 ± 0.05
	Data/MC	0.97 ± 0.04	0.98 ± 0.03	0.99 ± 0.02
Testbeam, LB	Data	1.25 ± 0.03	1.39 ± 0.04	1.39 ± 0.03
	MC	1.30 ± 0.02	1.37 ± 0.03	1.36 ± 0.02
	Data/MC	0.96 ± 0.02	1.02 ± 0.04	1.02 ± 0.02
Double ratio $\frac{(Data/MC)_{Cosmic muons, LB}}{(Data/MC)_{TB, LB}}$		1.01 ± 0.03	0.96 ± 0.04	0.98 ± 0.03

Recent improvements in the calorimeters

- New features
 - Dead calorimeter read-out correction in LAr
 - to recover the energy by LI Trigger read-out
 - LAr HV Moment
 - to clean up events with large HV correction
 - Tile Noise Filter
 - to unfold the coherent noise in TileCal
 - Offset correction from pile-up
 - to subtract the energy from another PV
 - Need to check the effect for the jet Pt scale from the Bad/Dead regions

CERN-KEK Committee, 5th meeting, 14.Dec.2010

Toshi SUMIE

Data preparation work

- In charge of production and maintenance of Jet/EtMiss & Jet physics D3PD
- Current analysis scheme
 - Produce ESD/AOD \rightarrow D3PD
 - D3PD contains a few flat ntuples for
 - run information
 - track/cluster, electron/photon/muon/tau, jet/MissingET
 - trigger information
 - Luminosity information
 - Useful, and easy to look at
- "NTUP_JETMET" D3PD
 - used by
 - Jet/EtMiss combined performance group
 - many jet calibration studies
 - MissingET studies
 - SM QCD jet physics group
 - Inclusive jet cross section measurement
 - Exotic physics group
 - Black-hole search
 - Contact interaction

- D3PD production
 - Current data size is already too large for personal grid usage...
 - To use the central production system, we need
 - special analysis package release
 - ⁻ installation into the grid
 - production-tag creation
 - We appreciate big help
 - by the production group!!
- Jet/EtMiss group disk management
 - Current D3PD size for the full 2010 data
 : more than 35TB...
 - need careful monitoring and management for production of data sample replicas in the grid sites
 - We are ready for the winter conf. analyses !!

Jets in bad calorimeter region

- Measurement of Jet Pt response dependence
 - on the energy fraction of the jets in the "bad" region in the calorimeter
 - ✓ called "ugly" jets
 - correction for missing calo readout by the trigger read-out
 - over-correction seen
 - Some regions suffer from low HV

Inclusive Jet Pt distribution

- Current Data and MC comparison
 - Pt in Data is harder than MC
 - MC: Pythia Leading order (LO) generator
- To solve disagreement due to the LO-PDF in Pythia
 simple calculation

 $\text{ME-LO} \otimes \text{PDF-LO}$

- k-factor = $\frac{1}{\text{ME-LO} \otimes \text{PDF-NLO}}$
- ⁻ good agreement with the data/MC ratio
 - PDF choice is driving current Data/MC difference

CERN-KEK Committee, 5th meeting, 14.Dec.2010

 LO-PDF has higher gluon density than NLO-PDF (since less splitting q→gq)

Toshi SUMIE

Pile-up study

- Additional collision of protons in the same bunch add energy to the jets : Pile-up
 - need correction to subtract the "offset" by pile-up
 - applied in the new release of analysis software
 - significant improvement in the forward region
 - up to 1% uncertainty will be quoted
- One problem found...
 - The offset correction is calculated with the number of towers
 - a mean number of towers used for the jets with clusters
 - large fluctuation in the transition region between HEC - FCAL
 - (Pt Offset) can be negative !!
 - Need one additional cleaning cut: E > 0

CERN-KEK Committee, 5th meeting, 14.Dec.2010

Summary

- Progress
 - TileCal EM calibration
 - showed good performance in the measurements for energy loss by muons from cosmic rays
 - 4% uncertainty on EM scale energy achieved
 - ✓ published
 - ⁻ Jet performance
 - Several new correction techniques in the bad region of calorimeter tested with the special sample
 - New D3PD sample prepared
 - Study of Pt response in the bad calorimeter region
 - Pile-up contribution tested
- Future plan
 - Towards a better jet energy scale uncertainty
 - Continue the "ugly" jets study
 - Quantify uncertainty from the pile-up correction effect
 - ⁻ part of a new JES with the release 16 sample soon
 - Measure the Jet Inclusive cross section with the better JES uncertainty using full 2010 dataset

Bad regions in the calorimeters

- Dead LAr modules
 - big energy loss due to the dead 2nd layers
 - energy recovery
 - DOTX correction
- Dead Tile modules
 - energy recovery
 - Cell energy interpolation correction

- LAr Bad HV region
 - LAr with reduced HV
 - not a correction
- "Ugly" jets
 - true jets but affected by the bad calorimeter region

Effect by DOTX: P₁

- no hole in dOTx region
- flat Pt distribution in barrel region

Toshi SUMID

Other correction methods

- for the bad regions
 - Cell level correction
 - extrapolation from the neighboring cells
 - applied in the EM energy
 - Jet level correction
 - function between energy dispersion vs. dR
 - not applied to the energy

Toshi SUMI

Parameters for the bad region

- BCH_CORR_*, LArBadHVRatio •
 - EM scale energy ratio in the bad regions
- η-Φ map ٠ of correction factors
 - energy fraction in the bad region in the EM scale for each jet
- **CELL** correction • is mainly applied to the dead TileCal modules

ф

3

2

1

-1

-2

-3

Toshi SUMID/

Correction factors

•: old w/o DOTX ■: new w/ DOTX

0.3

0.3

0.2

0.2

0.5

0.5

17

JET corr.

0.4

0.4

CELL corr.

• DiRegion - |η| < 2.8

What a rejects?

Jet calibration schemes

- Jet Energy (re-)Scale : a.k.a. Numerical Inversion(NI)
 - "Truth" jets
 - obtained by applying the jet reconstruction algorithm to the hadrons in MC
 - An energy scale applied to the reconstructed jet energy in order to adjust it to the "truth" jet scale
 - $\bullet \text{ NI(JES)} = \mathbf{E}_{True} / \mathbf{E}_{Reco}$
 - ⁻ e.g.) EM+JES
 - Jet reconstruction in the EM scale and NI for the final scale
- Cell weighting
 - EM
 - no weight, default
 - Global Cell Weighting (GCW, old HI)
 - Fit cell weight based on the energy density minimising resolution of reconstructed jets
 - Local Cell Weighting (LCW)
 - calculate corrections to single π[±] from MC to each TopoCluster
 - i.e.) simple particle ID
 - ✓ EM like: ~1, $π^{\pm}$ like: 1.3-1.6
 - JES for GCW/LC would be smaller

Jet Energy Scale Uncertainty

- Important parameter
 - for the sensitivity/systematic uncertainty in the physics analyses
- JES uncertainty in the EM+JES jets for ICHEP
 - 10% at Pt>20GeV
 - 7% at Pt>60GeV
 - Source
 - EM Scale: 3%
 - Noise: 3%
 - Hadronic shower model: 4%
 - Shape/Fragmentation: 3% (low Pt)
 - Non-closure: I-2 %
 - added linearly
- Report on the recent Improvements
 - EM scale
 - Closure
 - Noise
 - Pile-up
- New method based on the single particle E/p measurement

Toshi SUMID

MC-derived calibration

• Numerical Inversion using the jet energy

Jet mass correction in JES

- m_{Reco} / m_{True}
 - measured in the same way as energy response

JES Eta correction

Toshi SUMIDA 23

Heavy Ion sample

- NTUP_JETMET compatible D3PD prepared for HI data
 - events with jet_Et[0]>100GeV, Et[1]>25GeV
 - ~1650 events
- Added variables
 - Jets
 - Tower (not TopoTower)
 - ► R=0.2
 - SisCone
 - MET based on Tower jets
- Helped Jet/MET studies for the first result !!

