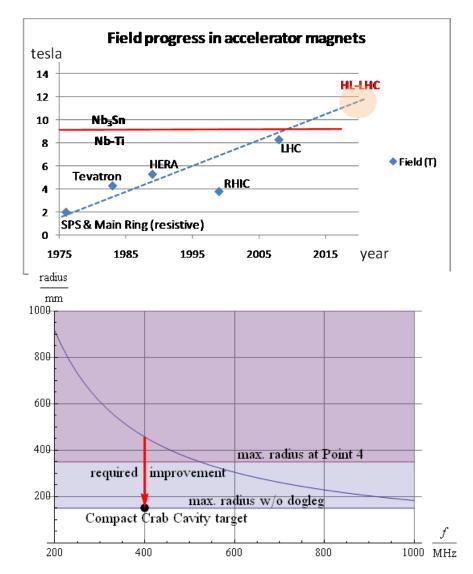

High Luminosity LHC (HL-LHC) and Magnet progress

Lucio Rossi CERN

From September 2010 HL-LHC formed as CERN project

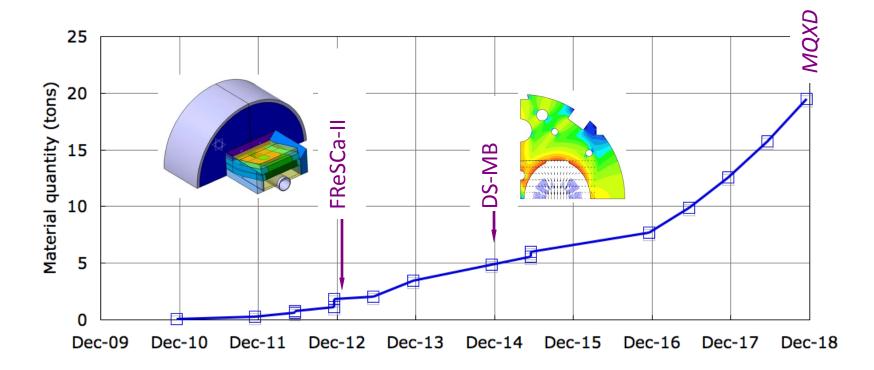


Program based on flattening at design luminosity

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

- 1) A peak luminosity of 5×10^{34} cm⁻²s⁻¹ with levelling, allowing:
- 2) An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of 3000 fb⁻¹ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

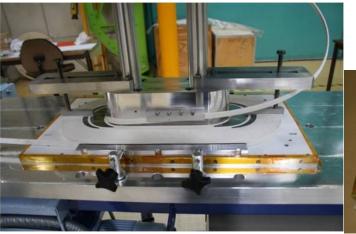
Critical technologies for HL-LHC 13 T Magnets- GW SC cables- Crab Cavities


SC Magnets beyond 10 tesla of accelerator qualities.

Inner triplets Quads and D1/D2 dipoles D1 could be the KEK design-contribution New step forward in circular accelerators !

Sc links for 200 kA-5 kV (1 GW DC) To remove from tunnel Magnet Power Supply, sensible to radiadiation To easy integration in crowdy zone To remove form tunnel the DFB (Current Leads) and easy operation and maintenance

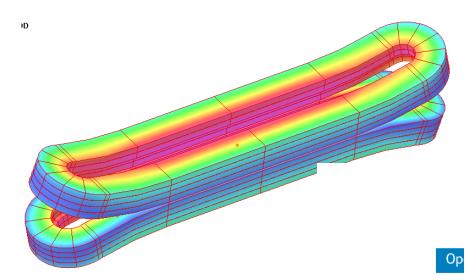
Crab Cavities at 400 MHz New equipment for accelerators, and even more difficult for LHC (very compact) An asset also for LC !

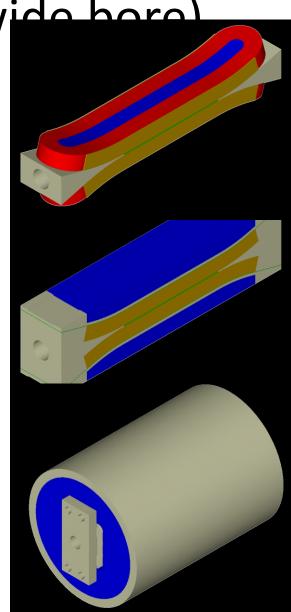

Progress on Magnets @ CERN 1. Assessing needs of Nb₃Sn

About 20 tonnes of high grade Nb3Sn (3 times the ITER specs in term of current density)

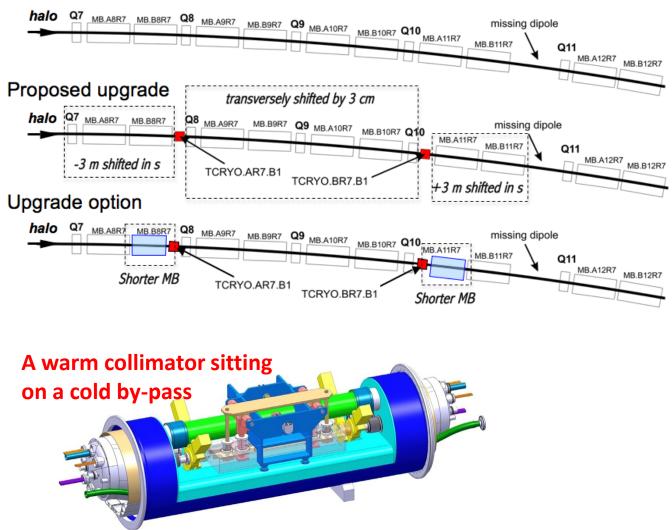
Progress on Magnets @ CERN 2. SMC (Small Model Coil)

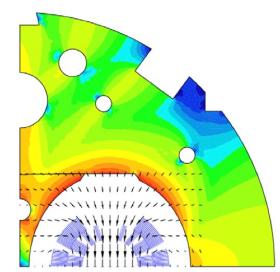
- 400 mm simple race-track coils (10-11 T)
- To validate conductor and winding technology
- SMC#1 built and tested with average results: insulation good, 60% perfomance probably a damage near terminal
- SMC#2 already started
- SMC#2 #4 foreseen in 2011 (SMC#1 took >2 y)

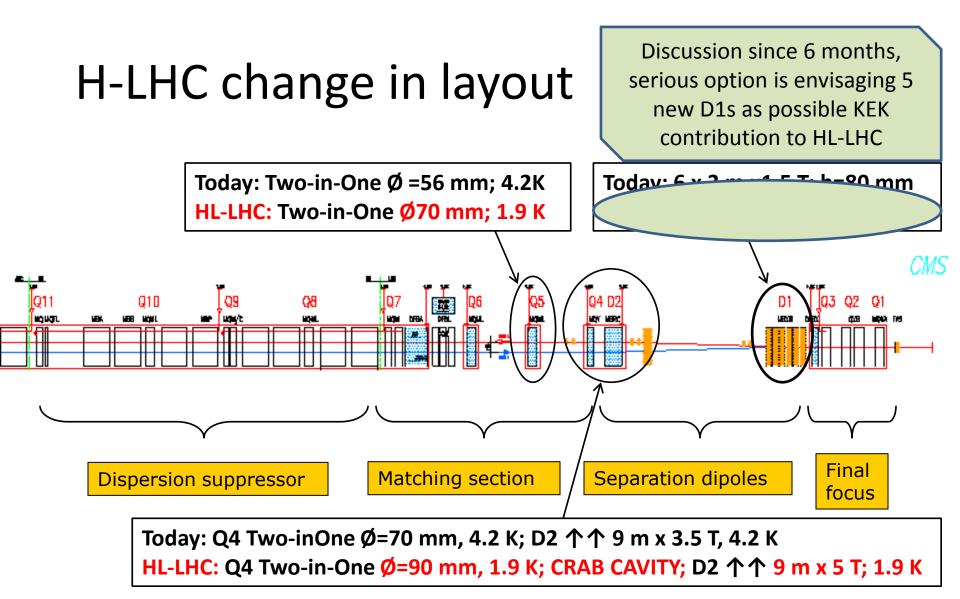




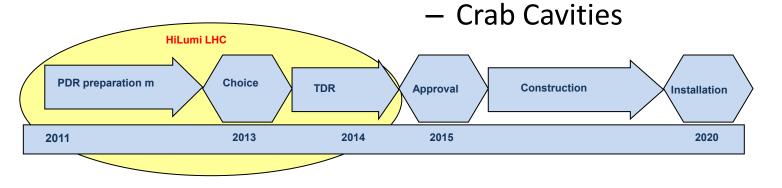
Progress on Magnets @ CERN 3. FRESCA2 (13 T dipole wide bore)

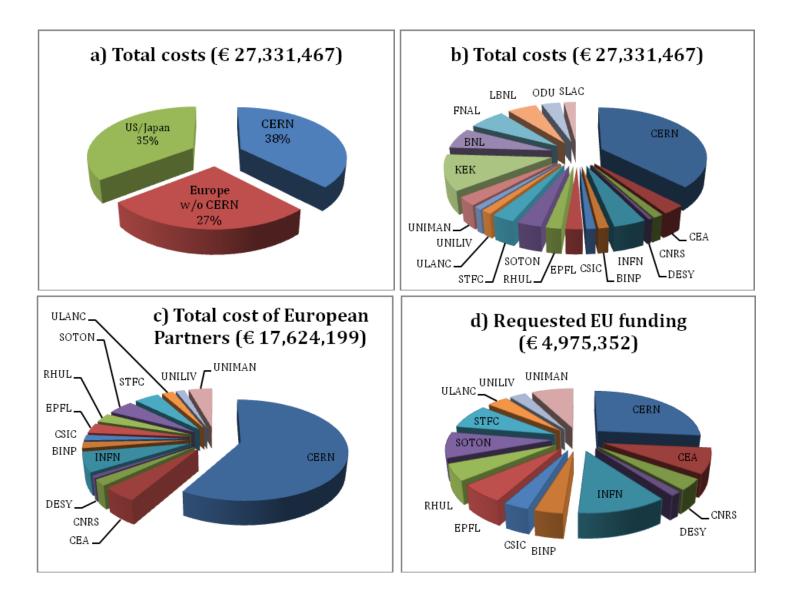

- Design has been decided for a new coil block design with flare ends.
- Near to be frozen for tooling constrution
- An alternative (classical cos θ) also under development



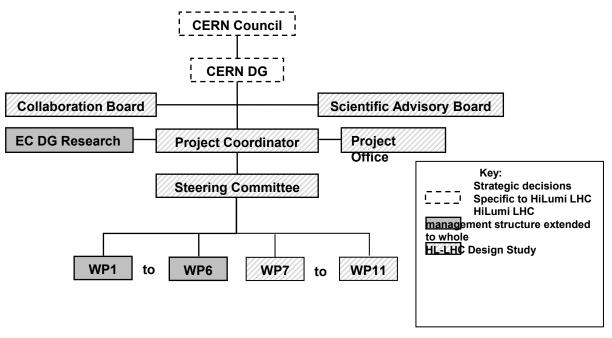

Progress on Magnets @ CERN 4. 11 T LHC Dipole for DS collimation

Present situation


In 2012-13 we plan to move 28 cold equipments Later on this will be avoided, but an alternative solution is studied in HL-LHC: A 11T LHC MB (twin) Collaboration with Fermilab



High Lumi EU FP7 Design Study


- 4 year program
- CERN
- CEA, CNRS, Desy, INFN, UniValencia, 5 UK
 Universities, STFC (UK), EPFL (CH), BINP
- KEK, BNL, LBNL, FNAL, SLAC, ODU (Jlab)
- KEK is very active in three main WPs (about 160 P-Months)
 - Accelerator Physics
 - Magnets

Value of the FP7 DS study

Governance of the whole HL-LHC collaboration

HL-LHC is larger than the FP7 design study application (named HiLumiLHC).

But the project structure is unique, some WPs are inside FP7 and soem are not, implemented by MoUs

WP#	Title	HL-LHC Design Study
1	Project management and Technical Coordination	HiLumi LHC
2	Accelerator Physics and Performance	
3	Magnet Design	
4	Crab cavities	
5	IR Collimation	
6	Cold Powering	
7	Machine Protection	Not within HiLumi LHC
8	Collider-Experiment Interface	
9	Cryogenics	
10	Energy deposition and shielding	
11	11 T dipole two-in-one	
12	Integration and (de-)installation	

Results of the CERN-KEK review on Nb₃Al conductor and Magnet program

Held on 10 December at CERN

Participants:		
CERN:	Luca Bottura, Luc Oberli, Gijs de Rijk, Lucio Rossi, Ezio Todesco	
NIMS:	Akihiro Kikuchi, Takao Takeuchi	
Hitachi Cable:	Kazuhiko Nakagawa	
KEK: Xin:	ne Jin, Tatsushi Nakamoto, Toru Ogitu (video), Kiyosumi Tsuchiya, Qingjin Xu, Akira Yamamoto	

Agenda

09:30 - 09:40	welcome	Lucio Rossi (CERN)	
09:40 - 10:00	Overview of HL-LHC	Ezio Todesco (CERN)	
10:00 - 10:25	Introduction, history of Nb ₃ AI R&D program towa	tion, history of Nb ₃ AI R&D program towards LHC upgrade	
		Akira Yamamoto (KEK)	
10:25 - 10:55	General overview of Nb ₃ AI material	Takao Takeuchi (NIMS)	
11:10 - 12:10 Progress and summary of Nb ₃ AI SC development at KEK/NIMS		nt at KEK/NIMS	
		Tatsushi Nakamoto (KEK)	
12:10 - 12:50	Proposal of new program for next years	Tatsushi Nakamoto (KEK)	
Afternoon:	discussion and recommendations		

Recommendations - 1

- CERN and KEK confirm that the R&D should go further than conductor development and step into magnet technology development. However the present KEK situation in personnel and material budget severely limits its capacity: therefore it may require more cooperative work for the practical magnet fabrication and test (with CERN).
- CERN encourage KEK/NIMS to extend efforts to develop a Nb₃Al conductor having a Nb matrix with a Ta sheet as barrier for magnetization and the strand surrounded by either a Nb or Ta layer. The effort should be aimed at a strand and cable sufficiently long enough to develop a model coil, this may require drawing work on a billet (~ 14 cm dia. x 45 cm long) with a 4000 t press.

Recommendations - 2

- CERN and KEK agree to seek for two possible magnet R&D plans of
 - A race track coil motivated towards 'react and wind' technology,
 - A large aperture cos-theta dipole with an aperture of 120 mm diameter (or a little larger), intended for the D1 of HL-LHC upgrade.
- CERN-KEK will organize another technical review meeting, in the middle of 2011, (within a period of June through September) to review the progress on the Nb₃Al strand development (at least 4 small billets with a 100 t press). It should be shown that strand can be made in sufficient length pieces. If this is met, the next slice of budget could be attributed in JFY2011. This in preparation for the readiness decision of Nb₃Al technology in the 2013-2015 period.
- CERN and KEK/NIMS will scope the Nb3Al conductor to be the primary candidate for the CERN-KEK/NIMS R&D program for the D1 (or other magnets) for the HL-LHC upgrade R&D. However, CERN and KEK agree that Nb₃Al and other alternate advanced conductor technology should be within their scope as an alternative for the HL-LHC work depending on the Nb₃Al progress and other research progress.
- CERN would like to encourage KEK to work on magnet technology applicable for both Nb₃Al and Nb₃Sn conductors so as to be ready for the HL-LHC applications. CERN and KEK should collaborate on these technologies.
- The review recommends CERN-KEK committee to adopt the proposed budget