Progress and Summary of Nb₃Al Superconductor and Magnet Development Program

Tatsushi NAKAMOTO KEK

CERN KEK Committee, Dec. 14, 2010. CERN

1

High Field Accelerator Magnet Development A Global Cooperation Network

Supercond. Sci. Technol. 18 (2005) p. 284. by N. Banno et al.

17 T

4.2 K

Nb₂Sn

0.2

Nb3Al has,

- -Lower critical current density (Jc) than Nb₃Sn.
- -But, less-sensitivity to strain, stress.
 - >> Candidate for HFM w/ large aperture, like D1.
 - >> Possibility of "React-Wind" technology
 - **Similar to current, matured "NbTi" coils.**
 - No heat reaction or impregnation after coil winding.

by N. Banno et al.

Nb3Al has,

-Lower critical current density (Jc) than Nb₃Sn.

- -But, less-sensitivity to strain, stress.
 - >> Candidate for HFM w/ large aperture, like D1.
 - >> Possibility of "React-Wind" technology
 - Similar to current, matured "NbTi" coils.
 - **No heat reaction or impregnation after coil winding.**

Dia. w/ Cu: Dia. w/o Cu: Area Reduction: Filament Dia.: Barrier Thickness: Twist Pitch: Piece Length: 1.0 mm 0.7-0.73 mm ~70 % 35 μm 4-6 μm 45 mm < 1 km (400-ton extruder)

* ~2 lots production per year...

* Wire breakings

Non-Cu Jc of Nb₃Al w/ Ta Barrier

Non-copper current density of Nb3Al is still about half of Nb3Sn.

Magnetization Curves at 4.2 K

Magnetization Curves at 4.2 K

Dia 1.0 mm, Cu ratio 1.0, Twist Pitch 45 mm, B ramp 1 T/min, Temp. 4.2 K

Deformation at Cabling

Nb3Al F3

Nb3Sn RRP

- Copper stabilizer is much deformed and partially debonded.
 But precursor is NOT deformed.
 Robust??
- •Subelements:

Elongated, merged, broken.

•Possible tin leakage

>> Degradation...

13 T Sub-scale Nb3Al/Nb3Sn Hybrid Magnet

- •To demonstrate feasibility of Nb₃Al cable.
- •Key design points
 - The common coil concept, and the shell structure,
 - Three Nb₃Al coils & two LBL-Nb₃Sn coils for Higher Peak Field.
- •2 practice coil windings and heat treatment with alumina-ceramic tape completed.
- •The 1st Nb₃Al coil winding in progress. Issue of strand pop-up under low tension.

Item	Value
Operation current	12.1 kA
Peak field	13.1 T
Stored energy	71.8 kJ
Magnet Length	740 mm
Shell Dia.	680 mm
Nb3A1 Strand Dia.	1 mm
Cu/Non-Cu ratio	0.96
No. of Stands	28
Cable dimension	13.93*1.84 mm2
Cable Insulation	0.25 mm
Nb3Al Coils No.	3
Turns No. per layer	14
Layers No. per coil	2
Nb3Sn Coils No.	2
Turns No. per layer	20
Layers No. per coil	2

Preliminary Conceptual Design of Cos Hodel Coil

1&2 layers Nb₃Al + 3&4 layers NbTi @ 1.9 K (NbTi: MQXA cable for inner layers)

* Calculated with J_c of K1 strand at 1.9 K

•XU will station at CERN from 2011: >> Design work for the HL-LHC >> Present design study.

0.078

20

40

60

80

100

Breaking at Wiredrawing

Nb₃Al wires by 400-ton extruder (1-km long wire) since 2004

Many wire breakings with Ta matrix.
Breaking initiated at Ta matrix.

•Need to reduce breaking rate for long wire production to develop model magnet in the NEXT R&D Program.

>> Drawing trials with 5 different tantalum ingredients have been carried out.

Wiredrawing Trials in 2010 •Unsuccessful.

- Own effort by Hitachi-Cable Co.
- Focus on property of tantalum sheet.
- KEK & NIMS have supported and provided new
- 4 tantalum sheets with different properties.

•Unsuccessful.
•No drawing trials reached the target diameter.

Preferable/Good

+ tantaium sneets with univerent properties.				Inappro	opriate/NG	Γarget: φ1.5 mm
Tantalum Sheet	Purity	Oxygen Content	Grain Slze	HV(0.1kg)	Elongation	Diameter of Wire Breaking
BRA	99.99 %	< 20 ppm	30-100 μm	77.1	25.5	3 mm
	99.98 %	< 20 ppm	10-30 μm	132.6	29.5	10.26 mm
	99.98 %	< 20 ppm	5-10 μm	122.6	27.3	8.82 mm
SALK.	99.99 %	< 1 ppm	50-100 μm	79.4	11.3	3 mm
	99.99 %	< 1 ppm	10-70 μm	92.3	9	4.41 mm

To Reduce Irregular Deformation

(A) Reduction of Stress Concentration (New design concerning) >> Niobium buffer layer implemented in K4 strand.

(B) Improving of Cold-workability (Microstructure control)

4E

0.5

16 μm

0.6

0.7

Fine Grain (10-20µm)

New Wiredrawing Trials

•Postpone the fabrication of K6 precursor. Carry-over of budget into JFY2011: 7 MJYen

•At least 4 trials, immediately in JFY2010!!

>> Need revision of budget profile.

•Fine grain + Elongation + Low HV + Nb buffer layer 🕊

Jelly Roll (hard) Nb (soft) Ta (hard) Nb (soft)

Nb/Ta/Nb sandwich design

(Unit: MJYen)

	JFY 2009	JFY 2010	JFY 2011	JFY 2012	JFY 2013	JFY 2014
KEK or Grant (Own Effort)	9	3	4 + ?			
Present R&D Program	54	30	21			
New Program (Prospect)						
Money Transfer From CERN	54	30				

- Carry-over of 7MJYen to JFY2011.
- Original budget of 21MJYen in JFY2011 is extended until JFY2013.
- >> Budget request of 9MJYen in JFY2011 to be reviewed.
- >> Rest of 12MJYen and nonapproved 59MJYen to remain for the New Program.
- >> Corresponding R&D covered by KEK's own effort: 7M(2012), 5M(2013).

(Unit: MJYen)

	JFY 2009	JFY 2010	JFY 2011	JFY 2012	JFY 2013	JFY 2014
KEK or Grant (Own Effort)	9	3	4 + ?	7 + ?	5 + ?	
Present R&D Program	54	30 23 _{Carry}	24 →7 + 9			
New Program (Prospect)						
Money Transfer From CERN	54	30	9			

- Carry-over of 7MJYen to JFY2011.
- Original budget of 21MJYen in JFY2011 is extended until JFY2013.
- >> Budget request of 9MJYen in JFY2011 to be reviewed.
- >> Rest of 12MJYen and nonapproved 59MJYen to remain for the New Program.
- >> Corresponding R&D covered by KEK's own effort: 7M(2012), 5M(2013).

(Unit: MJYen)

	JFY 2009	JFY 2010	JFY 2011	JFY 2012	JFY 2013	JFY 2014
KEK or Grant (Own Effort)	9	3	4 + ?	7 + ?	5 + ?	
Present R&D Program	54	30 23 _{Carry}	24 →7 + 9		Prospect. To be reviewe	d at 2011
New Program (Prospect)				28 (10km Nb3Al precursor)	13 (RHQ, plating, cabling)	30 (Model dipole development)
Money Transfer From CERN	54	30	9	28	13	30

- Carry-over of 7MJYen to JFY2011.
- Original budget of 21MJYen in JFY2011 is extended until JFY2013.
- >> Budget request of 9MJYen in JFY2011 to be reviewed.
- >> Rest of 12MJYen and nonapproved 59MJYen to remain for the New Program.
- >> Corresponding R&D covered by KEK's own effort: 7M(2012), 5M(2013).

2011-2014 Total: 80MJYen (prospect)

(Unit: MJYen)

	JFY 2009	JFY 2010	JFY 2011	JFY 2012	JFY 2013	JFY 2014
KEK or Grant (Own Effort)	9	3	4 + ?	7 + ?	5 + ?	
Present R&D Program	54	30 23 _{Carry-}	24 →7 + 9		Prospect. To be reviewe	d at 2011
New Program (Prospect)			?	28 (10km Nb3Al precursor)	13 (RHQ, plating, cabling)	30 (Model dipole development)
Money Transfer From CERN	54	30	9 + ?	28 - ?	13	30

Due to the intermediate technical review 2011, a part of the budget for the NEW R&D Program could be attributed in JFY2011.

2011-2014 Total: 80MJYen (prospect)

Budget Detail in JFY2011

(U	nit:	kJ	Yen)

		JFY 2010 Budget	JFY 2010 Predicted Closing	JFY 2011 Budget
Magnet R&D	Jigs, Yoke, Shell	1000	1563	1500
	Coil	3000	1300	2500
	PS, DAQ, Cryostat	2000	0	0
Wires and cable for the	Further processes for the previous year's precursor	0	2090	4000
magnet	Precursor (1 km)	10000	0	Carry-over 7000
	Cabling	Fermilab Collab.	Fermilab Collab.	Fermilab Collab.
	consumable	800	0	0
	Long wire production R&D	0	10000	0
Fundamental	15T Solenoid, Jc Stress Depend.	2000	200	Own Effort
Study	Thermal conductivity meas.	3000	380	Own Effort
	Cyanate ester resin, Gamma ray irradiation	1500	0	Own Effort
	Neutron diffraction, Strain Study	3000	1836	Own Effort
	Short strand R&D	1700	1448	Own Effort
Travel Expenses		2000	4183	1000

Total: 9MJYen

Appendix

Budget Plan at Dec. 2009

	JFY2009	JFY2010	JFY2011
Nb3Al wires, Subscale Magnet R&D	21,000	16,800	14,300
Fundamental Study	31,000	11,200	4,700
Travel, etc,	2,000	2,000	2,000
Total	54,000	30,000	21,000

3 years total: 105,000 kJ Yen approved at Committee 2008.

(Unit: kJYen)

Budget request for JFY2011 (planned in 2009) was 21 MJYen. >> should be revised.

Accounting

(Unit: JYen)

		JFY 2009 Final	JFY 2010 As of Today	JFY 2010 Prediction	
Magnet R&D	Jigs, Yoke, Shell	Covered by another grant	1,362,772	1,562,772	
	Coil	3,816,210	Own Effort	Own Effort +1,300,000	
	PS, DAQ, Cryostat	2,414,430	0	0	
Wires and cable	Further processes for the previous year's precursor	6,226,080	2,089,500	2,089,500	
for the magnet	Precursor (1 km)	6,636,000	(6,247,500)	0	
	Cabling	Fermilab Collab.	Fermilab Collab.	Fermilab Collab.	
	consumable	1,273,125	0	0	
	Long wire production R&D	0	4,073,146	10,000,000	
Fundamental	15T Solenoid, Jc Stress Depend.	13,488,300	0	200,000	
Study	Thermal conductivity meas.	3,777,900	380,534	380,534	
	Cyanate ester resin, Gamma ray irradiation	1,102,668	0	0	
	Neutron diffraction, Strain Study	10,124,887	629,758	1,836,458	
	Short strand R&D	4,326,272	1,447,793	1,447,793	
Travel Expenses		814,128	4,182,943	4,182,943	Carr

54MJYen Original 30M >> 23MJYen 7MJYen