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Overview

Stability Margin
Heat Transfer in He Il (1.9K, 1bar)

» Kapitza thermal resistance (dominant in He II)
« BL formation and SS heat transfer in He |
e Gas formation

0D Model:
» Cable enthalpy & Joule heat
+ Heat exchange with helium
1D Model: Single strand coupled with helium channel

* The heat conduction along the cable length
*  The helium counter flow

M-1D Model: Multi-strands model

*  Thermal coupling among strands

»  Currents redistribution through distributed electrical contacts
An example towards realistic beam loss simulation scenario

Conclusions
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Stability Margin
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Stability-Margin(At,,L )
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Helium (P,T)
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0D Model
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energy margin (mJoule/cm**3)

0D Model for different Tp
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Energy margin as from the
OD model at nominal
operating conditions, as a
function of the time for the
deposition of the heating
perturbation.

Two different cooling
models were considered: a
simplified heat transfer
based on the Kapitza
resistance, and a more
appropriate model that
includes the Kapitza
resistance as well as the
transition to helium | and
the formation of a boundary
layer around the strand.

Also reported the enthalpy
of the cable components,
either excluding or 9
including the helium
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1D Model
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Who is really interesting to the model used for helium counter flow is kindly
invited to read one of the following reference papers:

L. Bottura, C. Rosso, M. Breschi. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables. Cryogenics, 2000; 40: 617.
L. Bottura, M.Calvi. A.Siemko. Stability of the LHC Cables. Very soon available on Cryogenics.
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energy margin (mJoule/cm**3)
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1D Model for ditferent Tp

10

Energy margin as from the
1D model at nominal
operating conditions, as a
function of the perturbation
time.

The simulations have been
performed for two different
heated lengths as
indicated.

The results of the 0-D
model are reported for
comparison
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energy margin (mJoule/cm**3)
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Energy margin as from
the 1D model at nominal
operating conditions, as a
function of the length of
the heated zone.

The simulations have
been performed for
different heating times as
indicated.
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energy margin (mJoule/cm**3)

1D Model for ditferent 1 and Lp
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Energy margin as from the 1D
model as a function of the
cable operating current.

The simulations have been
performed for two different
heating lengths, as indicated.
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Multi-1D Model
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Thermal equation:
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No external sources of voltage
Uniform initial conditions |,=l,,/n

Strands are ideally shorted at the boundary
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M-1D Simulations
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energy margin (mJoule/cm**3)
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1000

Energy margin computed
using the 1-D model for a 4
super-strands cable at
nominal operating
conditions, of which one is
heated for a heating time of
1ms and over a heated length
of 1cm.

The 4 super-strands are
electrically coupled by a
inter-strand conductance of 1
MS/m.

The analysis has been
performed parametrically
varying the inter-strand
thermal conductance.
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energy margin (mJoule/cm**3)

M-1D Model for different Gy, & |
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energy margin (mJoule/cm**3)

MD Model for different G, & G,

250
! current: 7000 A
10 MS/m heated length: 1 cm
200 | 5 MS/m \L heating time: 1 ms

150

100 I 3 MS/m

2 MS/m

50 | 1 MS/m

0.5 MS/m

1 10 100

thermal conductance (W/ K m)

30/09/2005 Marco Calvi @ MPWG

Energy margin for a 4 super-
strands cable as a function
of the inter-strand thermal
conductance at several inter-
strand electrical
conductances, as marked in
the plot.

Operating current is 7 kA.
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"“Beam L0OSS” ke Scenario
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THEA 1.5 24-06-2005

“Beam Loss”
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energy margin (mJoule/cm**3)
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"“Beam L0SS” simulation results
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Resume

« Slower is the process higher is the impact of helium

 Slower is the process larger is the length of the
perturbation for which the conduction in metal does
still play a role

« At high currents a good thermal coupling among the
strands improves the stability

* At low current and with an efficient cooling the
stability of a weak thermally coupled multi-stands
cable can be higher than a fully coupled system

* Knowing the shape of the expected perturbation (l.e.
beam loss) may improve the accuracy of the stability
margin calculations
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Conclusions and Outlook

* Heat exchange coefficient between strands and
helium is the parameter with greatest relevance on
the actual energy margin

« At high current regime the electrical conductance
does not play an important role

« The thermal coupling among strand is a key
parameter which should be correctly estimated

« EXperiments are expected to validate the model:
— Stability experiments in fresca faclility (A.Verwe))

— Heat transfer measurements into helium in
operating like conditions (to be planned)

* Defining scaling laws to extrapolate the experimental
results to real operating conditions is one of the
expected outcome of this study
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