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Stability Margin Calculations for 

the LHC Magnets
(1st part)

towards prediction of realistic quench levels

for the operation of the LHC with high energy proton beams
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Overview
• Stability Margin

• Heat Transfer in He II (1.9K, 1bar)

• Kapitza thermal resistance (dominant in He II)

• BL formation and SS heat transfer in He I

• Gas formation

• 0D Model:

• Cable enthalpy & Joule heat

• Heat exchange with helium

• 1D Model: Single strand coupled with helium channel 

• The heat conduction along the cable length

• The helium counter flow

• M-1D Model: Multi-strands model

• Thermal coupling among strands

• Currents redistribution through distributed electrical contacts

• An example towards realistic beam loss simulation scenario

• Conclusions
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Helium (P,T)
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Transition HeII → HeI
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0D Model
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0D Model for different Tp
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Energy margin as from the 

0D model at nominal 

operating conditions, as a 

function of the time for the 

deposition of the heating 

perturbation. 

Two different cooling 

models were considered: a 

simplified heat transfer 

based on the Kapitza 

resistance, and a more 

appropriate model that 

includes the Kapitza 

resistance as well as the 

transition to helium I and 

the formation of a boundary 

layer around the strand. 

Also reported the enthalpy 

of the cable components, 

either excluding or 

including the helium 

fraction in the cable.
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Who is really interesting to the model used for helium counter flow is kindly 

invited to read one of the following reference papers:

L. Bottura, C. Rosso, M. Breschi. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables. Cryogenics, 2000; 40: 617.

L. Bottura, M.Calvi. A.Siemko. Stability of the LHC Cables. Very soon available on Cryogenics.
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1D Model for different Tp
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1D Model for different Lp & Tp
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The simulations have 

been performed for 

different heating times as 

indicated.
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1D Model for different I and Lp
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The simulations have been 

performed for two different 

heating lengths, as indicated.
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Strands are ideally shorted at the boundary
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M-1D Simulations
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M – 1D Model for different Gth
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Energy margin computed 

using the 1-D model for a 4 

super-strands cable at 

nominal operating 

conditions, of which one is 

heated for a heating time of 

1ms and over a heated length 

of 1cm. 

The 4 super-strands are 

electrically coupled by a 

inter-strand conductance of 1 

MS/m. 

The analysis has been 

performed parametrically 

varying the inter-strand 

thermal conductance.
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M-1D Model for different Gth & I
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operating conditions, 11850 
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MD Model for different Gth & Gel
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“Beam Loss” simulation example
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“Beam Loss” Simulation results

0

5

10

15

20

25

0 20 40 60 80 100

Percent of Cable Width

S
ta

b
il
it
y
 M

a
rg

in
 [
m

J
o
u
le

/c
m

3
]

Gth = 1 Watt/K/m

Gth = 10 Watt/K/m

Gth = 100 Watt/K/m

Gth = 1000 Watt/K/m

I = 11850A
B = 8.58T
Tp = 1ms

Cold side

Warm side

e
n
e
rg

y
 m

a
rg

in
 (

m
Jo

u
le

/c
m

*
*
3
)



30/09/2005 Marco Calvi @ MPWG 22

Resume
• Slower is the process  higher is the impact of helium

• Slower is the process larger is the length of the 
perturbation for which the conduction in metal does 
still play a role

• At high currents a good thermal coupling among the 
strands improves the stability

• At low current and with an efficient cooling the 
stability of a weak thermally coupled multi-stands 
cable can be higher than a fully coupled system

• Knowing the shape of the expected perturbation (I.e. 
beam loss) may improve the accuracy of the stability 
margin calculations
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Conclusions and Outlook
• Heat exchange coefficient between strands and 

helium is the parameter with greatest relevance on 
the actual energy margin

• At high current regime the electrical conductance 
does not play an important role

• The thermal coupling among strand is a key 
parameter which should be correctly estimated

• Experiments are expected to validate the model:

– Stability experiments in fresca facility (A.Verwej)

– Heat transfer measurements into helium in 
operating like conditions (to be planned)

• Defining scaling laws to extrapolate the experimental 
results to real operating conditions is one of the 
expected outcome of this study


