Report of the Reliability Sub-Working Group

Roberto Filippini on behalf of the RSWG *AB-BT*

Machine Protection Working Group Meeting CERN, 28 October 2005

Topics of the Presentation

- The mandate
- The studies
- The results
- The conclusions
- Future

RSWG MEMBERS LIST

- Jan Uythoven AB/BT (joint Chair)
- Roberto Filippini AB/BT (joint Chair)
- Brennan Goddard AB/BT
- Bernd Dehning AB/BDI
- Gianluca Guaglio AB/BDI
- Ruediger Schmidt AB/CO
- Bruno Puccio AB/CO
- Markus Zerlauth AB/CO
- Benjamin Todd AB/CO (Scientific Secretary)
- Silvia Grau TS/CSE
- Felix Rodriguez Mateos TS/HDO
- Antonio Vergara Fernandez TS/IC
- Angela Czizsek SC/IE

The Mandate

2nd RSWG meeting, 22/3/2004

- The group mandate is resumed in four points:
 - Analyze the **dependability** (safety, availability) of the LHC Machine Protection System.
 - Identify possible "**weakest links**".
 - Validate the **SIL3 level** required for safety of the present MPS architecture.
 - Study the **impact on dependability** of continuous surveillance, diagnostics, post-mortem activities and maintenance.
- Actions followed:
 - Agree on a **simplified core-architecture** of the MPS.
 - Agree on a **methodology** to be used for comprehensive reliability prediction, failure modes analysis and dependability modeling.

The MPS Core Architecture

- The **core architecture** includes those systems that are at the basis of the machine protection.
 - Beam Loss Monitors System (3500),
 - Quench Protection System (4000),
 - Power Interlocking Controller (36),
 - Beam Interlocking Controller (16) and the
 - Beam Dumping System (2)

• **Internal status surveillance** is also included. It detects failures in each system and issues failsafe operation aborts, called **false dumps**.

The MPS Core Architecture

Interlocked LHC Systems

- The MPS includes the **safety critical systems** of the LHC
- Also other systems send their interlock to the interlocking system
- Internal surveillance also sends signals to the interlocking system (false dumps)

The Results Summary Table For a Default Case Study

Operational scenario		System	Unsafety per year	False dumps/y	
_	200 days/year of operations, 400 beam operations (10h each)	-		Average	Std.D.
	followed by checks (2h each)	LBDS[RF] ⁽¹⁾	$1.8 \times 10^{-7}(2x)$	3.8(2x)	+/-1.9
Diagnostics effectiveness				X ,	
—	LBDS and BIC "as good as new" after checks (BLM, partially)	BIC [BT] ⁽²⁾	1.4×10 ⁻⁸	0.5	+/-0.5
_	QPS and PIC "as good as new" after periodic inspection or power abort	BLM [GG]	1.44×10 ⁻³ (Front-end) 0.06×10 ⁻³ (Back-end VME)	17	+/-4.0
Example of DR apportionment - 60% planned dumps		PIC [MZ]	0.5×10 ⁻³	1.5	+/-1.2
_	15% fast beam losses 15% slow beam losses	QPS[AV]	0.4×10 ⁻³	15.8	+/-3.9
_	10% others	MPS	2.3×10 ⁻⁴	41 ⁽³⁾	+/-6.0
Cross-Redundancy			5 75 ×10-8/h is STI 3		
_	No cross-redundancy within the Beam Loss Monitors ($P = 0$,		5.75 ×10 7/11 18 511.5		

(1) The LBDS false dumps are updated to 7.6 per year in total for the contribution of the Beam Energy Tracking system, calculated in 0.8/year (D.Huw Jones, summer student).

(2) A simplified BIC was studied, further analysis is needed.

(3) False dumps do not exactly sum up as they are concurrent events.

٠

•

•

٠

worst-case)

BLM, QPS and PIC

Yes cross-redundancy between

The Results Sensitivity to Dump Request Apportionment

The Results Sensitivity to BLM Cross-redundancy

• The parameter P stands for the probability a beam loss is detected with two monitors (connected to the same VME electronics). If we vary P then unsafety will change. Nothing happens for the false dumps.

Conclusions

MPS Safety and Availability

• SAFETY

- Calculations were based on a simplified MPS.
- The results <u>depend on the apportionment of dump requests</u>, cross redundancy and the <u>effectiveness of surveillance and post mortem diagnostics</u>.
- Those parameters are unknown before the start-up of the LHC. Depending on these parameters, safety can vary between SIL2 and SIL4.

• FALSE DUMPS

- Calculations were based on 3500 BLMs, 4000 channels for QPS, 36 PIC, 16 BIC and 2 LBDS.
- The number of expected false dumps per year is 41 [+/-6] (on average), which is about 10% of all fills.
- Results are independent from dump requests apportionment and cross-redundancy.
- The different systems within the MPS seem to be well balanced from a dependability point of view.

Conclusions Some Remarks

- **Unsafety and unavailability are probably overestimated** due to the conservative nature of the reliability prediction methods.
 - Unavailability is more sensitive to reliability prediction accuracy than unsafety. If failure rates are taken one order magnitude smaller, the false dumps would pass from 40 to only 4 per year.
- Fast beam losses are the main concern for safety.
 - Only beam loss monitors can cover them.
- The rearming procedure, presently assumed never failing, might affect safety.
- Other systems, presently not included, add coverage for many dump requests, with an expected safety improvement.
 - They are the Beam Current Decay Monitors, the Beam Position Monitors, the Fast Magnet Current Change Monitors of the magnet PC, etc...
- **Power supplies in the electronics (VME crates, etc.)** cause the largest fraction of false dumps.
- False dumps are also generated by systems outside the MPS like the magnet PC.
- **Downtime due to repairs and lack of spares** can further reduce the system availability.

Future What to Do Next?

- The **group's mandate has been accomplished** for a simplified though realistic MPS architecture.
- To fruitfully continue with the group it is necessary to:
 - Redefine the direction of further studies and the coordination (new mandate).
 - Find the people to carry out these studies (end of contract RF).
- A list of some **possible topics to be investigated** ...
 - Build a more complete model for the MPS especially for the BIC system.
 - Look at reliability of arming and post mortem procedures.
 - Split the mission into phases (filling, ramping, etc.) and ranking the failure of the MPS with respect to the phase criticality.
 - ?...

