



- ➔ Hardwired signals:
 - ST_CIRCUIT_OK (issued per circuit by QPS) → ST_ABORT_PIC (received by PIC)
 - Provokes a fast power abort of the concerned power converter
 - Transmitted via current loops integrating QPS, PIC and PC
- ➔ Software signals:
 - ST_PWR_PERMIT signal to be verified prior to powering of a circuit
 - Signal issued per circuit thus avoiding masking of signals during hardware commissioning
 - Signal is TRUE in case the related QPS systems and their supervision are available and ready for powering
 - Integrity of a superconducting circuit (e.g. after a quench) not covered by the signal
 - To be checked with the help of post mortem analysis

QPS controls layout

➔ Equipment per sector:

- 4 x gateways controlling 6 fieldbus segments with up to 60 clients
- 201/205 DQAMC type controllers
- ~29 DQAMS type controllers
- ~30 DQAMG type controllers

- Each QPS controller calculates a local ST_PWR_PERMIT signal based on the information collected from the associated equipment (quench detectors, quench heater power supplies ...)
 - Signal is transmitted permanently and time stamped
 - Signal is by definition FALSE if controller not in LOGGING state
- The ST_PWR_PERMIT of a circuit is calculated on the supervision level based on predefined tables and exchanged between QPS PVSS & PIC PVSS
 - ST_PWR_PERMIT_{Circuit} = Σ ST_PWR_PERMIT_{Controller}
 - In case of the main circuits the involved controller signals are routed through several gateways (up to 4)
 - Signal is not interlocking a change of its state from TRUE to FALSE creates an alarm
 - The signal has to be verified in case of repetitive powering cycles
 - Implementation (software interlock?) to be discussed
- Signal generation and exchange to be checked within LHC hardware commissioning