

<u>Fast Magnet Current Change Monitors (FMCM)</u> for additional protection against mains disturbances

...follow up of discussion in the LTC

Acknowledgements: V.Montabonnet, K.Kahle, V.Kain, P.Orlandi

Outline

→Questions we try to answer

- → Main Parameters of the CERN electrical network
- →Architecture of the electrical network
- → Failure propagation & some failure statistics
- → Susceptibility of power converters
- →Results and conclusions
- →Future work

System Layout & Protection aims

- → 25 FMCM units will be deployed for protection against fast DC current changes in the normal conducting magnets of the SPS-LHC transfer lines and the LHC
- → Quickest system to capture powering failures before significant beam effect (e.g. ∆I of 2*10⁻³ in 50µs for the MSE)
- Can we hope to achieve additional active protection against mains disturbances (AC side monitoring)
- ➔ Is this valid beyond the directly protected circuits?

➔ Based on the statistic of past network disturbances, a minimum immunity for equipment has been defined in an LHC ES 'Main Parameters of LHC 400/230V Distribution System'

- → Equipment racks with local power supplies for electronics supply can normally withstand
- Today's thyristor converters are amongst the first to suffer from disturbances due to their high power throughput and low storing capacity

Grouping of converters on transformers in BA4 and SR8

Example: Propagation of a 50% dip in Phase R of the 400kV network

		R	S	Т	R-S	S-T	R-T
400 kV		50 %	100 %	100 %	75 %	100 %	75 %
66 kV		58 %	97 %	96 %	78 %	100 %	77 %
18 kV		77 %	100 %	77 %	95 %	96 %	65 %
18/0.4	0.4 kV	94 %	94 %	66 %	100 %	77 %	77 %
19/2 2/0 4	3.3 kV	94 %	94 %	66 %	100 %	75 %	78 %
16/3.3/0.4	0.4 kV	94 %	94 %	66 %	100 %	76 %	76 %

Courtesy of K.Kahle

17th March 2006

Machine Protection WG, MZ,

- ➔ Failures propagate to lower voltage levels with >100%, while almost no upwards propagation is observed in the CERN network
 - Cause of this are the transformer vector groups and the reduction of zero sequence voltage components during 400/66/18kV transformation
- ➔ Average number of voltage variations observed
 - 400kV: 8/month, 18kV: 20/month, 0.4kV: 35/month
 - 60% dips, 10% swells, 30% transients, 0.4% mains failures (20% thunderstorms)

- ➔ In order to quickly capture disturbances, we have to search the 'weakest' element
- Power converters are particular dependent on the mains supply conditions
- → Three main converter types are used in the CERN accelerators
 - Switched mode converters (60A-8kA)
 - Main Dipole Thyristor converters (Main Dipoles 13kA)
 - Thyristor converters for e.g. dump septas (n.c. mangnets)
- Converters are supplied by 3-phase 400V AC for the switched mode converters or 18kV and 400V AC for the Thyristor converters.
 - Function Generator Controller (3 phase 400V AC or UPS for Inom>4kA)
 - DCCT electronics (3 phase 400V AC or UPS for Inom>4kA)
 - Power part (400V for switched mode or 18kV and 400V for Thyristor)

➔ Modeling of Power Converters in SABER

- During voltage surge of 1200V, 200us
- Over-voltage of 50% during 10ms
- Voltage drop of 50% during 100ms
- According to ES

→ Simulation results for 50% over-voltage on phase R during ramp and flat top

Simulation results for LHC Warm Dump Septa Converter

Simulation results for 50% under-voltage on phase R during 100ms

on phase R during 10ms

	Switch-mode converters	Main Dipole Thyristor Converter	Warm Dump Septa Thyristor converter	
Voltage surge	>1600V	<1ppm during ramp	negligible	
1200V, 1 phase, 200us		<1ppm during flat-top		
Over-Voltage	Saturation of	<1ppm during ramp	AC over-current	
50%, 1 phase, 10ms	choke, internal interlock	<2ppm during flat-top	<0.2% after 10ms	
Voltage Drop	Ripple >,	<1ppm during ramp	AC current trip	
50%, 1 phase, 100ms	U out drop	<3ppm during flat-top	0.2% after 10ms	

➔ Electronics will withstand voltage drops of 100% on three phases during 100ms for all converter types

Comparison with maximum FMCM detection levels

- Thyristor Power converters for n.c. magnets are particularly affected by mains disturbances, seem to be weakest element
 - Favorable, as FMCMs are connected to most of these converters

Max. detection levels of FMCMs are a factor of 4 smaller (and a factor of 10 faster than) than current deviations that can occur after typical disturbances

- → Failures on the same or higher voltage levels (≥ 18kV) are seen by all underlying FMCMs
- Beams are dumped BEFORE the area defined as minimum immunity is left (and the power converter trips)
- Disturbances on transformers without an FMCM cannot be detected, rely on PC surveillance
- ➔ Still to be continued....
 - Correlation of FMCM triggers and major mains disturbances to be observed and further studied during commissioning and initial operation periods
 - Correlated failures
 - Other critical equipment ? (RF,...)

Major Events (complete list)

Nr.	Datum	Uhrzeit	Ort	Art	Phase	Ursache	Dauer
1	24.06.2002	23:55	EDF 400 kV	dreiphasig	RST	Sturm	90ms
2	06.09.2002	5:15	EDF 400 kV \rightarrow Autotransfer 130 kV	dreiphasig	RST	Powercut	
3	02.11.2003	7:16:26:640	EDF 400k∨ Bois <u>Tollot-Genissiat</u>	einphasig		Unbekannt	50ms
4	21.04.2003	13:45:58:050	EDF 400kV Bois Tallat-Verbois	einphasig		Unbekannt	60ms
5	22.04.2003	14:57 – 16:40	UPS bật, 513				1h43min
6	29.04.2003	21:50	BE (Trafo EHT1 + Compensator SVC1)	zweiphasig		Kurzschluss	150ms
7	16.05.2003		BEQ1	zweiphasig		Kurzschluss	
8	28.05.2003	19:57:22:820	EDF 400k∨ Chamosson-Bois Tollot	einphasig		Blitzeinschlag	70ms
9	13.06.2003	9:46	BB3			Not Aus	
10	13.06.2003	9:50 – 12:10	Pompes eau + AU BB3 (<u>Wasserpumpen</u>)				2h20min
11	03.07.2003	15:00	SD 18 (SE 18)				
12	14.07.2003	12:30 oder 12:48	Compensator BEQ1			Batterie in SPS zu alt \rightarrow Ausfall	
13	15.07.2003 oder	18:10 – 19:15]o BA4 + BB4	einphasig		Fehler auf NS-Seite Trafo	1h05min
	16.07.2003						
14	21.07.2003	5:50	EDF 400 kV	einphasig		Sturm	60ms
15	21.07.2003	5:51 – 6:15	EDF 400k∨			Sturm	Oh24min
16	21.07.2003	15:09 – 19:30	EDF 400k∨			CERN Power cut	4h21min
17	23.07.2003	15:00 – 15:05	Onduleurs SD18 (Wechselrichter)				OhO5min
18	27.07.2003	8:42	400k∨ Station Bois Tollot	einphasig		Erdfehler Fehlauslösung durch	