

Possible failures on LHC magnets and time constants of their effect on the beam

Andrés Gómez Alonso AB/CO-MI

- Motivation
- Considered failures
- Evaluation criteria
- Assumptions
- Results
- Conclusions
- First simulations

- BLMs will detect the losses after they happen: in some cases, need of detecting failures before beam losses
- Add redundancy with respect to BLMs

 \Rightarrow FMCMs have to be installed in critical magnets

• Study the timing of the beam losses induced by failures \Rightarrow determine most critical magnets

• Set priorities for more detailed further studies (simulations)

Considered failures (I)

Constant voltage from PC

Worst case. PC internal failure: maximum voltage difference $(\Delta V=V_{fail}-V_{nom})$ Short circuit (sets $V_{fail} = 0$) Most relevant in warm magnets

Constant dI/dt from PC

The PC sets by mistake the ramping dI/dt Not concerned by the time constant of the circuit (more critical for SC magnets)

Considered failures (II)

Other failures...

Thought to be extremely unlikely and/or have very slow effects in relation to those above

Bending magnets

Time for Δx to reach $6\sigma_{beam}$ Time to reach 1.15 10¹¹ particles beyond aperture

Focusing magnets Time for $\triangle Q$ to reach 0.01 Time to reach 1.15 10¹¹ particles beyond aperture

The worst case scenario is assumed ⇒ some results may be too pessimistic

Power converter:

- Includes extra 10 % on peak voltage (maximum possible over voltage)

Beam:

- Only transverse planes
- Worst possible phase differences and beta values

Losses:

- The missteered beam hits a primary collimator

Warm bending magnets

	Injection (450 GeV)									
	Short ci	rcuit	Constar	nt dl/dt	Max ∆V					
	t for 6σ	t _{loss}	t for 6σ	t _{loss}	t for 6σ	t _{loss}				
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]				
MBXW	80	34	926	404	3.2	1.4				
MBW (IR3)	85	36	527	230	2.5	1.1				
MBW (IR7)	110	47	791	346	2.5	1.1				
MCBWH	328	113	3736	1633	7.7	3.4				
MCBWV	321	111	3665	1602	7.6	3.3				

		Collision (7 TeV)									
	Short cir	cuit	Constan	t dl/dt	Max ∆V						
	t for 6σ	t _{loss}	t for 6σ	t _{loss}	t for 6 o	t _{loss}					
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]					
MBXW	3.9	1.7	707	309	3.9	1.7					
MBW (IR3)	21	9.3	2081	909	21	9.3					
MBW (IR7)	27	12	3121	1364	14	6.5					
мсвwн	62	26	14738	6443	20	9.0					
MCBWV	61	25	14455	6319	20	8.8					

SC bending magnets - Injection

				Injection	(450 GeV)			
	Short ci	rcuit	Constant	dl/dt	Max 🛆	V	Quenc	:h
	t for 6 o	t _{loss}	t for 6σ	t _{loss}	t for 6σ	t _{loss}	t for 6 o	t _{loss}
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]
MB (arc 3-4)	25830	11340	145	64	110	48	317	210
MBRB	2357	1027	552	242	60	26	479	316
MBRS	2992	1300	763	335	84	37	564	372
MBRC	2160	938	1178	518	94	41	569	375
МВХ	1739	755	844	371	44	19	568	374
МСВН	125546	35260	5446	2392	1831	799	3429	1817
MCBV	128138	36413	5383	2364	1811	791	3385	1804
мсвсн	24079	9114	2563	1126	644	282	2017	1241
MCBCV	33125	11826	3236	1421	814	356	2366	1414
МСВХН	62082	17456	5440	2389	701	306	3425	1816
MCBXV	34897	10170	5241	2302	412	180	3288	1775
МСВҮН	43314	16349	2805	1232	878	384	2035	1250
MCBYV	42919	16223	2785	1223	794	348	2026	1246

SC bending magnets - collision

				Collisio	n (7 TeV)			
	Short cir	cuit	Constant	dl/dt	Max del	ta V	Quen	ch
	t for 6 o	t _{loss}						
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]
MB (arc 3-4)	6504	2857	568	250	457	201	16	11
MBRB	601	264	2215	973	389	171	24	16
MBRS	763	334	3072	1349	576	252	28	19
MBRC	165	72	1423	625	165	72	16	10
MBX	91	40	701	308	59	26	13	8.6
МСВН	18552	7658	21478	9434	5258	2270	132	85
MCBV	19246	7949	21292	9352	5279	2281	131	84
мсвсн	4312	1846	8707	3824	1477	643	85	56
MCBCV	6501	2746	12832	5636	2194	951	105	68
МСВХН	2107	912	5340	2345	524	229	63	42
MCBXV	1237	536	5144	2260	308	135	62	41
МСВҮН	3565	1547	4504	1978	1025	449	58	38
MCBYV	3554	1542	4490	1972	954	418	58	38

Experimental dipoles

	Injection (450 GeV)										
	Short	circuit	Constant	dl/dt	Max ∆V						
	t for 6σ t _{loss}		t for 6σ	t _{loss}	t for 6 o	t _{loss}					
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]					
MBAW	Not reached	17846	44205	19326	687	295					
MBWMD	Not reached	2409	26633	11644	157	68					
МВХWТ	10118	625	7120	3113	17	(7.6)					
MBLW	28026	5446	21766	9516	426	184					
мвхwн	Not reached	1572	32304	14123	47	21					
MBXWS	Not reached	Not reached	64241	28086	31	13					

	Collision (7 TeV)									
	Short cir	cuit	Constant	dl/dt	Max ∆V					
	t for 6σ t _{loss}		t for 6 o	t for 6σ t _{loss}		t _{loss}				
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]				
MBAW	1548	647	52101	22779	532	229				
MBWMD	332	141	34149	14930	127	55				
MBXWT	70	30	6937	3033	14	(10)				
MBLW	1567	656	50803	22211	617	265				
MBXWH	658	258	115921	50680	135	58				
MBXWS	202	81	88525	38703	35	15				

Warm quadrupoles

	Injection (450 GeV)									
	Short	t circuit	Мах	ΔV	Constant dl/dt					
	t∆Q	t _{loss}	t∆Q	t _{loss}	t∆Q	t _{loss}				
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]				
MQWA (avg)	366	350	0.3	(10)	0.3	10				
MQWB (worst)	Not reached	Not reached	60	58	60	58				

	Collision (7TeV)									
	Short	circuit	Max	×ΔV	Constant dl/dt					
	t∆Q	t _{loss}	t∆Q	t _{loss}	t∆Q	t _{loss}				
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]				
MQWA (avg)	356	340	356	340	356	340				
MQWB (worst)	Not reached	Not reached	1435	1256	1435	1256				

SC quadrupoles - Injection

	Injection (450 GeV)									
	Short	circuit	PC wors	st failure	Constan	t dl/dt	Quen	ch		
	t ∆Q	t _{loss}	t∆Q	t _{loss}	t ∆Q	t _{loss}	t∆Q	t _{loss}		
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]		
MQF 23	7605	124581	31	420	2194	28996	1930	1888		
MQM	89105	81337	1028	993	17899	17298	3797	3628		
MQMC	Not reached	Not reached	1403	1356	28689	27725	Not reached	Not reached		
MQML	14683	14090	267	258	6661	6438	1725	1690		
MQY	93818	87381	1510	1458	15974	15437	3309	3194		
MQXA/MQXB	46542	44893	1089	1052	8004	7735	934	917		
MQXA (Q1)	27805	25883	215	207	1369	1323				
MQXB	40771	38785	620	599	15934	15399				
MQT	Not reached	Not reached	1381	1326	85484	82613	Not reached	Not reached		
MQTLH	Not reached	Not reached	1287	1242	56859	54949	Not reached	Not reached		
MQTLI	Not reached	Not reached	1210	1168	21888	21153	Not reached	Not reached		
MQS	Not reached	Not reached	2854	2750	52715	50944	Not reached	Not reached		
MQSX	Not reached	Not reached	2943	2783	303405	293213	Not reached	Not reached		

SC quadrupoles - collision

		Collision (7 TeV)									
	Short	circuit	PC wor	st failure	Consta	nt dl/dt	Quen	ch			
	t∆Q	t _{loss}	t∆Q	t _{loss}	t∆Q	t _{loss}	t∆Q	t _{loss}			
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]			
MQF 23	7342	122286	518	7046	36332	487960	189	185			
MQM	66527	62020	28870	27570	246616	238332	328	317			
MQMC	Not reached	Not reached	35273	33628	386963	373964	Not reached	Not reached			
MQML	4447	4289	2135	2062	35547	34353	95	93			
MQY	6133	5918	4808	4641	28530	27572	85	83			
ΜQXA/MQXB	2324	2245	1390	1343	6544	6324	21	(21)			
MQXA (Q1)	601	581	109	105	837	809					
MQXB	1093	1056	525	507	9295	8983					
MQT	Not reached	Not reached	Not reached	Not reached	1294769	1251276	Not reached	Not reached			
MQTLH	Not reached	Not reached	Not reached	Not reached	1005083	971320	Not reached	Not reached			
MQTLI	Not reached	Not reached	24049	22273	313613	303078	Not reached	Not reached			
MQS	Not reached	Not reached	Not reached	Not reached	820021	792475	Not reached	Not reached			
MQSX	Not reached	Not reached	1007	967	165627	160063	Not reached	Not reached			

Quadrupoles – 1 mm offset (4 mm MQXA/B)

	Injection (450 GeV)						Collision (7 TeV)					
	PC w failu	orst ure	Short	circuit	Que	ench	PC worst	failure	Short c	ircuit	Quer	nch
	t for 6σ	t _{loss}	t for 6σ	t _{loss}	t for 6σ	t _{loss}	t for 6 o	t _{loss}	t for 6σ	t _{loss}	t for 6σ	t _{loss}
	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]
MQWA	35	15	284	110			284	110	284	110		
MQWB	307	119	NR	NR			NR	NR	2519	391		
MQF 23	1702	746	NR	292135	NR	4331	7876	3430	128422	48840	243	144
MQM	1393	607	NR	33791	NR	2339	8671	3623	15490	6216	158	100
MQMC	3638	1568	NR	NR	NR	NR	21752	8501	87659	23498	360	186
MQML	1005	438	NR	28021	NR	2384	3503	1500	7441	3097	123	79
MQY	4946	2129	NR	NR	NR	NR	12110	5058	15691	6455	135	87
MQXA/B	781	343	32859	14122	785	515	1102	484	1842	808	19	(12)
ΜQXA	110	48	9787	3729	1973	1218	71	31	393	172		\smile
MQXB	205	90	10524	4379	1232	795	227	100	473	207		
MQT	7386	1895	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
MQTLH	721	312	NR	18971	NR	3357	2221	931	8422	3077	224	135
MQTLI	3752	1541	NR	NR	NR	NR	14240	4793	NR	47667	NR	488
MQS	2667	1126	NR	NR	NR	NR	9899	3735	NR	28854	NR	348
MQSX	NR	3051	NR	NR	NR	NR	6360	1499	NR	NR	NR	NR

450	GeV [–]	Magnet	T _{loss} [ms]	Failure
	MBW	D3,D4 in IR3, IR7	1.1	Max ∆V
	MBXW	D1 in IR1, IR5	1.4	Max ∆V
	MCBWV	Warm dipole	3.3	Max ∆V
	MCBWH	correctors	3.4	Max ∆V
	MBXWT	ALICE orbit comp.	7.9	Max ∆V
	MQWA	Q4, Q5 in IR3, IR7	11	Max ∆V
	MBXWS	LHCb orbit comp.	13	Max ∆V
	MBX	D1 in IR2, IR8	18	Max ∆V
	MBXWH	LHCb orbit comp.	21	Max ∆V
	MBRB	D4	26	Max ∆V

TeV —		Magnet	T _{loss} [ms]	Failure
	MBXW	D1 in IR1, IR5	1.7	Max ∆V
	MBW	D3,D4 in IR3, IR7	6.5	Max ∆V
	MBX	D1 in IR2, IR8	8.6	Quench
	MCBWH/V	Warm correctors	9.0	Max ∆V
	MBXWT	ALICE orbit comp.	10	Max ∆V
	MB	Main dipole	10	Quench
	MBRC	D2	10	Quench
	MQXA/B	Inner triplets	12	Quench (4mm)
	MBXWS	LHCb orbit comp.	15	Max ∆V
	MBRB	D4	16	Quench

7

First simulations

- Tracking done with MAD-X
 - *Relatively few turns: the simulation speed is not an important issue*
 - Changing B field: madX is versatile
 - Easy to obtain the beam twiss parameters with a changing magnetic field
 - Code modification to record the losses and take into account skew collimators
- Only with collimators used in phase 1
- No statistical alignment or field errors, no crossing angles

Results - comparison

RD1.LR1 (MBXW) at 7 TeV:

Study: $t_{loss} \ge 1.7 \text{ ms}$

Simulation: $t_{loss} = 3.0 \text{ ms}$

RQ4.LR7 (MQWA) at 450 GeV:

Study:	$t_{loss} \ge$	10 ms
Simulation:	t _{loss} =	5.2 ms

Assumed losses in a single location -> not realistic for quadrupoles: distributed losses

Losses do not happen mainly in a primary collimator

Tune shift not considered in the study

Lost particles at collimators Worst powering failure at RQ4.LR7 at 450 GeV

Profile: dipole failure

Beam profile at TCP.C6L7 Worst powering failure at RD1.LR1, 7TeV

Profile: quadrupole failure

Beam profile at TCLIB.6R2.B1 Worst powering failure at RQ5.LR7 at 450 GeV

- MAD-X modifications offer a good tool for further loss recording (< 1000 turns is time-reasonable)
- Next simulations to come...
 - Other critical magnets according to the values obtained from the theoretical study (MBXW, MBXWT, MBX...)
 - Groups of circuits more global powering failures (ex. RQ4 and RQ5 in IR7 fail at the same time)
 - *Quench of the inner triplets (MQXA/MQXB)*
 - Addition of statistical alignment and field errors in all the elements, crossing angles, etc.
- Need of more realistic current decays -> some measurements may be needed here...

Many thanks **to V. Kain, V. Montabonnet, S. Redaelli, G. Robert-Demolaize, R. Schmidt** and **M. Zerlauth** for their useful comments and suggestions

And to **F. Schmidt** and especially **A. Koschik** for their valuable help with MAD-X

Quadrupole failure

Quadrupole failure

07/02/2022

andres.gomez.alonso@cern.ch

27

Round cut

andres.gomez.alonso@cern.ch

1200

Theoretical study (II)

Time calculations for MB powering failures

	Time for $\Delta x = x_m^{(1)}$	
Max ⊿V at PC	$t = -\frac{L}{R} \ln \left(1 - \frac{2\sin(\pi Q)Ex_m}{\sqrt{\beta_{ap}\beta_{fail}}ecB_0 l\left(\frac{\Delta V}{V_0}\right)} \right)$	
Constant <i>dI/dt</i>	$t = \frac{2\sin(\pi Q)Ex_m I_0}{\sqrt{\beta_{ap}\beta_{fail}}ecB_0 l\left(\frac{dI}{dt}\right)}$	

$$\Delta \mathbf{x} \text{ for } \mathbf{N}_{\text{lost}}^{(2)}$$
: $\Delta x = F^{-1}\left(\frac{Nlost}{Ntot}; 0, \sigma_x\right) + x_{ap}$

- (1) x_m set to a convenient value (N σ or such that a N_{lost} particles hit the collimator)
- (2) $N_{lost} = 1.1*10^{11}$. Number of particles in a bunch $F^{-1}(x; \mu, \sigma)$ is the inverse cumulative Gaussian function

Theoretical study (III)

Time calculations for MQ powering failures

	$\Delta Q = \Delta Q_{min}$	$\Delta\beta/\beta = (\Delta\beta/\beta)_{min}$
Max ⊿V at PC	$t = -\frac{L}{R} \ln \left(1 - \frac{4\pi \Delta Q_{\min}}{K_0 l \beta_{fail} \frac{\Delta V}{V_0}} \right)$	$t = -\frac{L}{R} \ln \left(1 - \frac{2\sin(2\pi Q) \left(\frac{\Delta \beta_{ap}}{\beta_{ap}}\right)_{\min}}{K_0 l \beta_{fail} \frac{\Delta V}{V_0}} \right)$
Constant <i>dI/dt</i>	$t = \frac{4\pi I_0 \Delta Q_{\min}}{K_0 l \beta_{fail} \frac{dI}{dt}}$	$t = \frac{2\sin(2\pi Q)I_0 \left(\frac{\Delta\beta_{ap}}{\beta_{ap}}\right)_{\min}}{K_0 l\beta_{fail}\frac{dI}{dt}}$

 $\Delta\beta/\beta$ for N_{lost}

$$\frac{\Delta\beta}{\beta} = \left(\frac{6\sigma}{\sigma F^{-1}\left(\frac{Nlost}{2Ntot};0,1\right)}\right)^2 - 1$$

Theoretical study (I)

Bending magnets

Deflection angle

$$\theta_{kick} = \frac{ec}{E} l\Delta B = \frac{ec}{E} B_0 l \left(\frac{I(t)}{I_0} - 1 \right)$$

Offset at position s

$$\Delta x(s) \leq \frac{1}{2\sin(\pi Q)} \sqrt{\beta_s \beta_{fail}} \theta_{kick}$$

Quadrupoles

Tune shift

 $\Delta Q = \frac{k_0 l \beta_{fail}}{4\pi} \left(\frac{I(t)}{I_0} - 1 \right)$

Beta beating

$$\frac{\Delta\beta_s}{\beta_s} \le \frac{k_0 l\beta_{fail}}{2\sin(2\pi Q)} \left(\frac{I(t)}{I_0} - 1\right)$$