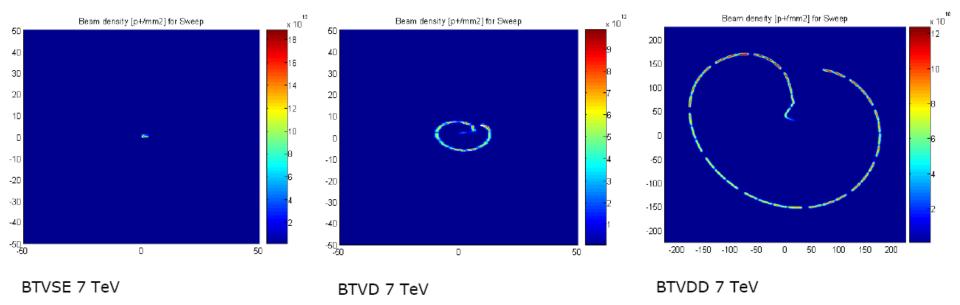
Interlocking LHC screens

- 6 screens in beam dump lines for extracted beam
 - 2 x BTVSE, 2 x BTVD, 2 x BTVDD in LSS6
 - Single beam passage guaranteed
- 13 screens for injection (matching/steering)
 - 4 x BTVS in LSS2
 - 4 x BTVS in LSS8
 - 1 x BTVS in LSS7
 - 2 x BTVM in LSS3
 - 2 x BTVM in LSS4

Input

P+ density limits (EB)

- for the Ti foils you can use a max density of:
 - 1E12 p/cm^2 for a circulating beam (should never happen but...)
 - 1E16 p/cm^2 single shot (just from temperature limits)


• for Al_2O_3

- No use with circulating beam
- 1E15 p/cm^2 single shot (from rough thermal-stress estimate)

Figures with 'no safety margin'!

Beam dump screens

P+ density profiles on screens (BG)

p+ densities on TD line screens

bunches	Nominal sweep de	ensity p+/mm2	Limit p+/mm2 (f	actor 2 safety)	450 GeV Max	lp+/bunch	7 TeV Max Ip	+/bunch
2808	450	7000	Ťi	Al203	Ti	Al203	Ti	Al203
BTVSE	4.2E+13	2.9E+14	5.0E+13	5.0E+12	2.0E+11	2.0E+10	2.9E+10	2.9E+09
BTVD	3.1E+12	1.5E+13	5.0E+13	5.0E+12	2.8E+12	2.8E+11	5.5E+11	5.5E+10
BTVDD	4.2E+10	1.9E+11	5.0E+13	5.0E+12			4.6E+13	4.6E+12
bunches	Single bunch density p+/mm2		Limit p+/mm2 (factor 2 safety)		Ti Max I p+		Al2O3 Max I p+/bunch	
1	450	7000	Ti	Al203	450	7000	450	7000
BTVSE	1.9E+10	2.9E+11	5.0E+13	5.0E+12	4.6E+14	4.6E+13	2.9E+13	2.9E+12
BTVD	1.3E+10	2.0E+11	5.0E+13	5.0E+12	6.5E+14	6.5E+13	4.2E+13	4.2E+12
BTVDD	8.2E+08	1.3E+10	5.0E+13	5.0E+12			6.6E+14	6.6E+13
bunches	No MKBH sweep density p+/mm2		Limit p+/mm2		Ti Max I p+		Al2O3 Max p+/bunch	
2808	450	7000	Ti	Al203	450	7000	450	7000
BTVSE	4.2E+13	2.9E+14	5.0E+13	5.0E+12	2.0E+11	2.0E+10	2.9E+10	2.9E+09
BTVD	9.9E+12	4.9E+13	5.0E+13	5.0E+12	8.6E+11	8.6E+10	1.7E+11	1.7E+10
BTVDD	3.6E+11	1.5E+12	5.0E+13	5.0E+12			5.5E+12	5.5E+11
bunches	No MKBV sweep density p+/mm2		Limit p+/mm2		Ti Max I p+		Al2O3 Max I p+/bunch	
2808	450	7000	Ti	Al203	450	7000	450	7000
BTVSE	4.2E+13	2.9E+14	5.0E+13	5.0E+12	2.0E+11	2.0E+10	2.9E+10	2.9E+09
BTVD	1.5E+13	7.6E+13	5.0E+13	5.0E+12	5.6E+11	5.6E+10	1.1E+11	1.1E+10
BT√DD	4.6E+11	2.0E+12	5.0E+13	5.0E+12			4.2E+12	4.2E+11
bunches	No MKB sweep de		Limit p+/mm2		Ti Max I p+		Al2O3 Max I p+/bunch	
2808	450	7000	Ti	Al203	450	7000	450	7000
BTVSE	4.2E+13	2.9E+14	5.0E+13	5.0E+12	2.0E+11	2.0E+10	2.9E+10	2.9E+0
BTVD	3.7E+13	2.0E+14	5.0E+13	5.0E+12	2.3E+11	2.3E+10	4.2E+10	4.2E+0
BTVDD	2.8E+12	1.4E+13	5.0E+13	5.0E+12			6.1E+11	6.1E+10

Safe total intensities

Maximum total swept intensity (beam in 2808 bunches)

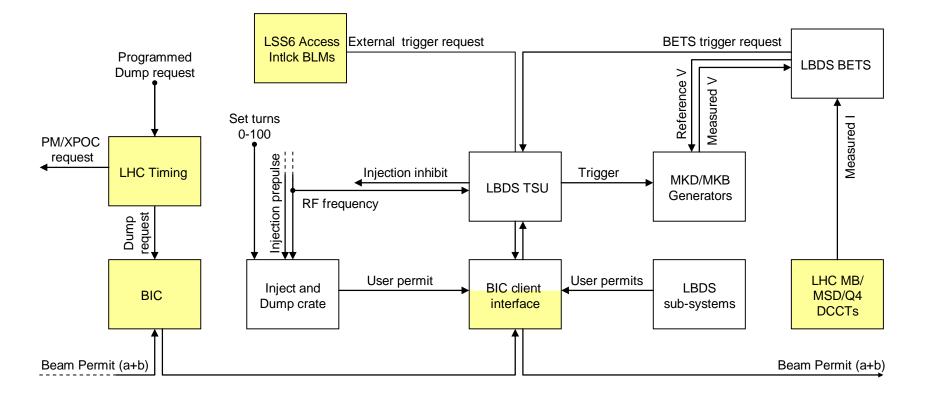
	Ti Max I	p+swept	Al2O3 Max I p+ swept	
	450	7000	450	7000
BTVSE	5.7E+14	5.7E+13	8.1E+13	8.1E+12
BTVD	7.7E+15	7.7E+14	1.5E+15	1.5E+14
BTVDD			1.3E+17	1.3E+16
			1.3ETI/	1.56

Maximum total unswept intensity (beam in 1 or a few bunches)

	TiMax Ip	+ unswept	Al2O3 Max I p+ unswept		
	450	7000	450	7000	
BTVSE	4.6E+14	4.6E+13	2.9E+13	2.9E+12	
BTVD	6.5E+14	6.5E+13	4.2E+13	4.2E+12	
BTVDD			6.6E+14	6.6E+13	

Conclusions

- BTVDD (Al₂O₃)
 - Fixed, so no interlocking
 - Safe for nominal sweep up to ultimate intensity at 7 TeV
 - Damaged for total dilution failure beyond 6e10p+/bunch at 7 TeV
- BTVD
 - Ti screen
 - Safe for nominal sweep up to ultimate intensity at 7 TeV
 - Damaged for MKBV or total dilution failures, beyond 4.2e10 p+/bunch at 7 TeV
 - Al₂O₃ screen
 - Safe for nominal sweep for ultimate intensity at 450 GeV
 - Damaged for nominal sweep above 5.5e10 p+/bunch at 7 TeV
 - Damaged for MKBH/MKBV/total dilution failures
- BTVSE
 - Ti screen
 - Safe for nominal sweep at 450 GeV
 - Damaged above 2.9e10 p+/bunch at 7TeV
 - Al₂O₃ screen
 - Damaged above 2e10 p+/bunch at 450 GeV
 - Damaged above 2.9e9 p+/bunch at 7 TeV
- All screens OK with 3e12 p+ at 7 TeV (17 ultimate bunches)


Interlocking proposal

- For all screens no movement should possible with beam in LHC
 - HW interlocking at the front-end to prevent moving using the beam presence flag
 - Signal to BIC to dump beam if screen starts moving (before movement happens!)
- Sequencer to make explicit checks prior to injection that screen positions are coherent with the proposed fill intensity and maximum energy
- SW interlocks -> beam dump if conditions violated during fill
- Conditions for sequencer/SW interlocking checks:
 - BTVSE
 - Ti Screen: cannot use above total intensity of 5e13 p+ at 7 TeV.
 - Al₂O₃ screen: cannot use above total of 3e13 p+ at 450 GeV / 3e12 p+ at 7 TeV.
 - BTVD
 - TI screen: no SW interlocking can be used at all times
 - Al₂O₃ screen: cannot use above total intensity of 1e14 p+ at 7 TeV.

Injection screens

Inject and dump mode

- For injection setting-up with screens, and studies requiring less than 100 ms of circulating beam, e.g. aperture measurements in injection/extraction channel.
- Will use a dedicated hardware system to trigger the beam dump via the BIS
- Necessary to dump after less than one full turn, to ensure that injection setting up with screens can be performed with a single beam impact.
- To protect the screens, maximum number of turns has to be strictly limited.
- This mode has to be limited to Safe Beam from SPS
- Also use a timing event at a few ms after the requested number of turns to provide redundancy for increased screen protection

Protection of BTV screens at injection

- Screens can only be in beam in "Inject and Dump I" mode to ensure protection of screens – AND when turns requested is below safe limit (depends on screen type and intensity)
- Safe numbers of turns....
 - Al₂O₃ screens withstand 10¹³ p+/mm², and Ti screens 10¹⁴ p+/mm². For nominal optics, p+ density at screen for injected nominal batch of 3.3×10¹³ p+ is ≤1.1×10¹³ P+/mm².
 - Assuming that the safe beam limit is 10^{12} p+ at 450 GeV, safe number of turns for Ti screens is ~ 300, and for Al₂O₃ screens ~30.
 - Taking $\times 3$ margin, max. turns with safe beam should be **100** for Ti and **10** for Al₂O₃ screens.
 - What about 1000 turns with pilot beam? Product of **[turns × intensity]** must not exceed 10^{13} for Al₂O₃, and 10^{14} for Ti screen (so pilot is safe for both screen types).

Interlocking proposal

Screen interlocking

- HW interlock from screens to inhibit user permit for unsafe beam, if screen in beam.
- Sequencer to ensure that: mode = Inject and dump, turns loaded into I&D crate, beam intensity = safe in SPS, beam intensity in SPS below limit (use SPS intensity interlock for this? It works...).
- SW interlock with turns requested, SPS intensity and screen type to allow or inhibit injection.
- Additional protection measures
 - Limit the maximum number of turns to 1000 in Inject & Dump HW
 - In this mode always include a timing event a few ms after the I&D dump should occur
 - As a real HW interlock with no software dependence, use (existing?) BLMs at each screen, with interlock threshold at an appropriate integration time, to dump beam if losses detected exceed dangerous level.

FS draft ready for checks...

Page 5 of 9

-1211 Geneva 23	LHC	C Project Document No. LHC-	LHC Project Document No. LHC-
tzerland	CERN Div./Group	r Supplier/Contractor Document No. AB/BT	Page 5 c
the Large		EDMS Document No.	3.2.2 MATCHING SCREENS BTVSM
Hadron Collider			The minimum beta functions are similar in amplitude to those at the BTVSI monitor Therefore at 450 GeV the product of the turns with the intensity must be at maximum: • 1.5 × 10 ¹⁴ p+.turns for the Ti screens;
S project		Date: 2005-04-04	 1.5 × 10¹ p+.turns for the Al₂O₃ screens.
			The BTVSM screens are only to be used for 450 GeV energy.
-			3.2.3 LBDS SCREENS
	unctional Specification		For the dump screens, which are used at different energies and with different beam sweep the maximum proton density is found by numerically superposing the distributions given I the local β functions using the calculated positions of the swept bunches and finding t maximum density [3]. The calculated proton densities at 450 GeV and 7 TeV are show below in Table 1 for a single nominal bunch of 1.15 × 10 ¹¹ p+. Table 2 shows the case of sweep with a 2808 bunches with nominal intensity. Tables 3-5 show the p+ densities at t screens for the cases of MKBH, MKBV and total dilution failures. Table 1. p+ densities at the TD line screens for a single nominal bunch.
monitoring the operation and single shot intensity The interlocking of the s allowing the maximum fle screens their use will requise the shortly f document recalls the func interlocking and specifies	Abstract ed in the LHC for commissioning, of the beam dump. The screens har which can be accommodated, give screens must ensure that these lin xibility for their diagnostic use. For iuire a particular machine mode, 'inj following injection, after a program tion of the different screens, define the functionality required for the dware and software interlocking and	ve limits on the circulating on by thermal constraints. mits are respected, while the injection and matching lect and dump', where the med number of turns. This s the requirements for the different related machine	Table 1. p+ densities at the 1D line screens for a single nominal bunch. bunches Single bunch density p+/mm2 1 450 GeV BTVSE 1.9E+10 2.0E+11 2.0E+11 BTVDD BTVDD 8.2E+08 1.3E+10 Table 2. p+ densities at the TD line screens for nominal 2808 bunch sweep. bunches BTVSE 450 GeV 7000 GeV BTVDD 8.2E+13 2.9E+14 2808 BTVSE 4.2E+13 2.9E+14 1.5E+13 BTVDD BTVDD 4.2E+10 1.9E+11
epared by : DDARD AB/BT RAVIN AB/BI NINGER AB/OP	Checked by : R. BAILEY AB/OP E. CARLIER AB/OP P. COLLIER AB/OP B. DEHNING AB/BI	Approval Group Leader: R.SCHMIDT AB/CO	Table 3. p+ densities at the TD line screens for 2808 bunch sweep with no MKBH dilution. bunches No MKBH sweep density p+/mm2 2808 450 7000 BTVVSE 4.2E+13 2.9E+14 BTVD 3.6E+11 1.5E+12
	L. LENSEN AB/BI		
	L. LENSEN AB/BI V. KAIN AB/OP M. LAMONT AB/OP T. LEFEVRE AB/BI V. MERTENS AB/BT B. PUCCIO AB/CO		Table 4. p+ densities at the TD line screens for 2808 bunch sweep with no MKBV dilution. Dunches No MKBV sweep density p+/mm2 2808 450 7000 BTVSE 4.2E+13 2.0E+14 BTVD 1.5E+13 7.6E+13 BTVDD 4.8E+11 2.0E+12