Current Decay after a Quench A 1st look for LHC MBs & MQs

> Pierre Pugnat AT/MTM/TF

Ouline

- Introduction
- Measurement results on test benches
- How fast can be the current decay of the quenched magnet in the LHC ?
- Conclusion

Key Ingredients to the current decay

 As soon as the power converter is switched off, the current decay of the quenched magnet is governed by the growing of its R(t):

$$I(t) = I_Q \exp\left\{-\int \frac{R(t) dt}{L}\right\}$$

- 1st order approximation, L(t): L(MB) ≈ 110 mH, L(MQ/2) ≈ 5.6 mH
 ⇒ Much faster current decay for MQ/2
- Mostly two quantities play a major role in the growing of R(t):
 - RRR = R(300K)/R(10K) of the stabilizing Cu-conductor (typically 70 300)
 - The amount of energy density deposited during the quench i.e. the type of quench (much larger spectrum)
 - ⇒ For more & more energy deposited by beams, faster & faster will be the current decay... How faster ?

Various types of quenches performed on test benches

- Minimum Energy quenches
- Heater Delay quenches
- Training quenches
- Conductor limited quenches

2007 January 29th

Pierre Pugnat – MPWG – Current decay after a quench

Quench Heater Delay in MBs

Quenches occurred locally & spread "globally" by QH to limit

the T_{max}

Case of provoked quenches in MBs with controlled conditions i.e. energy deposition

Zooming for the MB current decay

 Measurement of the time at which Δ*I*/*I* = -10⁻³ for provoked quenches at nominal, *i.e a corresponding dipole kick and maximum close orbit deviation:*

$$\Delta x' = -\frac{\Delta B l}{B \rho} \approx 5.1 \,\mu rad$$
$$\Delta x = \frac{\beta_{\max}}{2\sin(\pi Q_x)} \frac{\Delta B l}{B \rho} \approx 0.6 \,mm$$

with $\beta_{max} = 177 \text{ m}$, $Q_x = 64.31 \text{ and}$ $B \rho = 23.357 \times 10^3 \text{ Tx m}$. \blacktriangleright Scale $\sigma = 0.2$ -0.3 mm

 △I// = -10⁻⁴ at nominal after ~ 25 ms

Overall current decay of MBs

Case of MQs for a similar provoked quench

 This is ~OK for "slow" quenches but what about for "fast" ones ?

- How fast could be R(t) / with beams ?

NB: To reach the 6 V threshold to commute the diode at 11850 A, less than 1% of the MB need to be quenched with T around 10 K...

Case of FermiLab Quenches

Case of FermiLab Fast Quenches

July 8,2004 – B11 Horizontal Separator Spark

Summary of FermiLab Experience

- Collider II Halo removal system has worked well as far as halo removal efficiency and automatic process.
- Still working on improving collimator and post –mortem system for abort kicker prefires.
- Dec 5,2003 quench and damage was "wake up call" to rethink Tevatron beam loss protection.
- Learned details of new category of "fast quenches".
 - Implemented new QPM code to abort on detection of quench within 1-2msec, instead of 16msec. But still mask BLM during stores due to false aborts.
- Reviewed all motion controlled devices with appropriate Abort.
 - Vacuum abort upgrade done.
 - Pot motion upgrade done.
- Insufficient process for gathering systematic and automatic data for analyzing past quenches involving beam loss. Working on better record keeping of data for every quench.
- Provided input to new BLM system coming in 2005.

FNAL-Tevatron

Fermilab

Cern 2005

From http://lhc-collimation.web.cern.ch/lhc-collimation/files/DStill_2005-04-15.pdf

And HERA?

Conclusion

- From the "slow" quenches performed on test benches (5-12 kJ deposited in 100 ms at nominal current), the minimal ∆t@10⁻³ which can be deduced are:
 - 34 ms for MBs
 - 3-4 ms for MQs.
- In case of fast or/and "massive" beam losses ⇒ "fast" quenches ⇒ Serious problems will occur if BLMs fail…
 - Change of strategy by optimizing the reliability/efficiency of QPS before the availability of the machine ?

i.e. start with much lower QPS validation time window (say 1-2 ms instead of 10.5 ms ?) and increase it progressively to reduce false aborts down to the acceptable level ? (A. Siemko validated 5 ms window in the past...)

In addition, for "Fast" quenches the magnet dI/dt will be enhance by the decrease of L at high frequency...

Equivalent AC-inductance vs. frequency at 1.9 K

NB: only for the trend, for a detail analysis the relevant inductance mustbe considered...(from https://edms.cern.ch/file/369859/1/6 Pugnat.pdf

