Measurements and Simulations for the LHC BLM System at the HERA Proton Beam Dump

Markus Stockner et al.

Machine Protection Working Group – MPWG 2 November, CERN

Content

- Calibration overview of the LHC BLM System
- Detector Response Functions
- HERA Proton Beam Dump
- HERA Dump Installation
 - Acquisition System
 - Space Charge Effect Correction
 - Final Measurement Results
- HERA Dump Simulation
 - Simulation Results
 - Comparison of Measurements and Simulations
- Estimation of an LHC BLM Detector Threshold
 - Folding-Method
 - Comparison to previously calculated Thresholds
- Conclusions

Calibration of the BLM system

- Detector response determination
- Error on hadronic shower tail simulation (error on threshold)
- Validation of the system (long term system test in accelerator environment)

Ionization Chamber Response Simulation

Detailed detector simulation with Geant4 (8.1.p01 QGSP_BERT_HP):

- 9 different particle types
- Kinetic energy range: 1 keV 1 TeV
- 60 deg impact angle relative to detector axis, uniform distribution
- 2 mm thick detector wall of stainless steel leads to energy cutoff:
 - Protons ~30 MeV
 - Electrons, pions ~3MeV
- Deposited energy is converted with W-value (N₂: 34.8 eV per electron-ion pair, ICRU report 31)

November 2, 2007

Validation with different Particle Beams

- Proton (400 GeV, T2, SPS extraction line): 13%
- Gamma (662 keV, Cs137, SC-RP): 14%
- Neutron (174 MeV, TSL, Sweden): 13%
- Mixed radiation field (120 GeV, H6, CERF target area): 17%

Results:

- Linearity of detector at intermediate intensities (up to 100 μA)
- Systematic error of 17% on the detector response functions

HERA Proton Beam Dump

- Proton e⁻/e⁺ collider
- Circumference: 6 km
- Injection energy: 39 GeV
- Top energy: 920 GeV
- Beam current: ~100 mA
- ~ 1.3x10¹³ protons
- 96 ns bunch spacing
- Superconducting dipole magnets
- BLM System: pin diodes

- Internal dump
- Inner core filling pieces: Carbon, Aluminum, Copper, Iron
- Surrounded by a 14 cm iron tube
- Iron blocks 6.5x1x0.2 m outer shielding

November 2, 2007

HERA Dump Installation

- 6 ionization chambers on top of the dump
- Longitudinal spacing ~ 1 m
- Beam impinging from the right side

Acquisition System

- 8 ionization chambers around dump
- In tunnel patch box:
 - Filter: 1 µF
 +10 kOhm
- Surface patch box:
 - 21.5 kOhm
- t = 40 ms

- CFC
- DAB card
- Power PC
- Data stored on Linux machine
- Continuous acquisition every second
- Post mortem since Jan. 2007 (40 μs, 1.7 s)

Electronics Calibration

- Lab-calibration with an equivalent network:
 - Ionization chamber replaced with a capacitor
 - Implementation of all filters and resistors
- Measurement data was cut below 0.15 µC ~ 900 CFC counts (kink, relative error 20%)
- Maximum relative error 10% in used range

Induced charge versus measured CFC counts

Beam Sweep during Extraction

- Beam is sweep over front face of dump
- Sweep area L \sim 60 mm
- Beam is diverted downwards in respect to the beam orbit
- Diversion of 60 120 mm

y

- Kicker magnets ~ 80 m upstream of proton dump
- Sweep area relative to centre of Carbon filling piece -6 to -61 mm
- Similar for both energies (39 GeV and 920

Measurement Results

November 2, 2007

Space Charge Effect Correction

November 2, 2007

Correction Factors

- At injection energy and low beam intensity was no correction applied
- At 90 mA beam current up to factor ~ 3
- At top energy and low beam intensity ~ 1.6
- Top energy and beam current of \sim 100 mA a factor of \sim 5

Systematic Uncertainties

• Systematic error taken into account in the final results

- Background (remanent radiation) ~ 0.1%
- Beam intensity ~ 2%
- Electronics ~10 %
- Misalignment of the detectors investigated in the simulation (1 10%)
- Estimated error from plots (4 sigma) below is about 15% including beam sweep (bunch pattern) effects, the space charge effect corrections and statistical error

Final Measurement Results

- Relative detector signal for each detector placed on the HERA proton beam dump at injection and high energy.
- total statistical and systematical uncertainty, (range 16% to 21%)

detector	$39\mathrm{GeV}~\mathrm{[aC/p]}$	a error	^{b)} error	$920\mathrm{GeV}\;\mathrm{[aC/p]}$	a error	b error
1	0.291	0.026	0.066	3.37	0.14	0.71
2	0.720	0.018	0.132	8.35	0.25	1.54
3	0.413	0.029	0.081	8.06	0.23	1.48
4	0.191	0.021	0.041	6.26	0.16	1.15
5	0.063	0.004	0.013	2.95	0.09	0.57
6	0.031	0.001	0.006	1.32	0.12	0.28

4 sigma total

HERA Dump Simulation

- Geant4 (8.1.p01), Physics lists:
 - LHEP
 - FTFP
 - QGSP-BERT-HP
- Black-hole method: first step: recording of particle fluence spectra in a box covering all 6 detectors; second step: detector signal simulation
- Combined-method: detector implemented on dump, energy deposition in sensitive gas
- Folding-Method: used particle fluence spectra from black-hole and folds it with pre-simulated detector response functions
- FLUKA (courtesy of Roderik Bruce) black-hole method with Geant4 detector signal simulation

November 2, 2007 Machine Protection Working Group

Combined-

Comparison of Particle Spectra

- QGSP-BERT-HP and FLUKA show similar spectra
- FTFP far off, less low energy neutrons and less total number of particles
- Spectra similar at different detector positions (differ only in height)

Verification of the equivalent Methods

- The combined-method results are equivalent to black-hole method results
- Folding-method shows largest deviation of 18% for the first four detector compared to the black-hole method
- Systematic uncertainties in the simulations:
 - Backscattered or created particles from tunnel wall ~ 5%
 - Detector signal simulations (response function error) ~ 17%
 - Simplification of beam parameters (sweep, ...) ~ 10%
 - Differences in the simulation models (QGSP-BERT-HP to FLUKA) ~ 20%

Simulation results

- Simulated detector signals from Geant4 QGSP-BERT-HP and FLUKA agree best at both energies with a maximum deviation of 40%
- LHEP (Geant4) is similar
- FTFP show much lower signal (spectra)
- FLUKA shows a slightly wider shower at 920 GeV
- Strong dependence on simulation code and physics models

Comparison of Measurements and Simulations

- Significant difference in absolute height and longitudinal shape between measurement and simulation.
- QGSP-BERT-HP and FLUKA closest to data
 - Detector 2: Geant4 and FLUKA within 40% to the measurements at both energies
 - Between 1.5 and 3.5 m difference of about 70%
- Consequences for LHC:
 - Geant4 (QGSP-BERT-HP) and FLUKA for the threshold simulation

November 2, 2007

Estimation of an LHC BLM detector threshold

Ingredients:

- Detector response functions
- MQY magnet simulation (Mariusz Sapinski)
- Quench levels (Dariusz Bocian, LHC project note 44)
- Folding-method:
 - Folding pre-simulated detector response functions with simulated particle fluence spectra
 - Simplified and faster approach to generate detector signal

Comparison to in the past calculated detector thresholds

Shower Simulation

- Impact point of the protons at the beam screen, beginning of the coil
- Impact angle of 0.24 mrad
- Quench level calculation:
 - Scoring of energy deposition in the coil of the magnet in cells (volume: 0.08 to 0.16 cm3)

- MQY spectra dominated by neutrons and gammas
- HERA dump spectrum dominated by neutrons, fewer charged particles
- The relative number of particles is about a factor of 10 different

Recording of particle fluence spectra outside of cryostat in a 3.4 m long detector strip

Generation of Detector Signal

Detector signal Σ (folding of detector response function with spectra

Integrated detector signal

Both detectors at 1.5 m after proton impact corresponds to detector 2 at HERA dump

Contribution of the different particle types to the signal

	LHC MQY	HERA dump
e+/-	12.6%	3.8%
gamma	30.7%	18.5%
mu+/-	0.9%	0.9%
neutron	12.1%	42.6%
pi+/-	20.6%	13.6%
proton	23.1%	20.6%
total signal $[aC/p]$	184.14	7.61

November 2, 2007

Comparison to previously calculated Thresholds

- Loss duration dependent quench limits for the MQY magnet.
- Previously calculated minimum and maximum BLM signals for LHC arc magnets
- Interpolation between the HERA beam dump measurement (70% uncertainty at 16 λ_0) and the mixed radiation field measurement (17% uncertainty at 3 λ_0) yields an
- estimated uncertainty on the LHC threshold simulations of 50%
- For a detector placed between 0.5 to 3.5 m after impact.

- Transient losses: 1.4×10^{-5} A (at 40 µs)
- Steady state losses: 3x10⁻⁹ A (at 100 s)

Conclusions

- Detector response functions simulated
- Validated for different irradiation scenarios within 17%
- Hadronic shower measurements and simulations performed
- Geant4 (QGSP-BERT-HP) and FLUKA most accurate
- Simplified BLM detector signal generation with Folding-Method validated
- Estimated uncertainty on LHC BLM detector threshold simulation: 50%
- Calculated detector thresholds within BLM system specifications

Acknowledgements

http://cern.ch/blm

- C. Fabjan
- B. Dehning, D. Bocian, E.B. Holzer, G. Ferioli, J. Emery, E. Effinger, C. Chery, J. Koopman, D. Kramer, L. Ponce, R. Tissier, M. Hodgson, M. Sapinski, C. Zamantzas
- A. Bland , J.J. Gras, S. Jackson
- M. Brugger, D. Forkel-Wirth, C. Theis, H. Vincke
- R. Bruce, S. Gilardoni

DESY:

F. Willeke, M. Bieler, P. Duval, B. Holzer, P. Schmid, M. Schmitz, R. Schmitz, J. Wilgen, K. Wittenburg