

Values for Safe-Injection/Safe-Beam Flag

The ATLAS Point of View

Sigi Wenig

MPWG 16-Nov-2007

Introductory Remarks

- The ATLAS Pixel Detector is installed
- It cannot be removed for beam commissioning
 - Removal necessitates complete opening of one side of ATLAS detector
 - Beam pipe is integrated
 - BCM system is integrated
 - A removal/re-installation would need several months
- The Pixel Detector is worth 15 MCHF (material costs only)
 - There is no replacement existing
 - Replacement of inner layer (B-Layer) foreseen the earliest in 2012

ATLAS Experiment

ATLAS Beam Pipe and BCM

Pixel Installation in Cryostat

Simulation Machine

- LHC Project Note 335 by Dariusz Bocian, January 2004 Accidental Beam Losses during Injection in the Interaction Region IR1
- It is based on
 - Pilot bunch of $5x10^9$ p (in 370 ps)
 - Various wrong settings of Magnets MCBXV, MCBXH, D1, D2 (at injection)

Simulation ATLAS - Two Scenarios

- Wrong setting of D1
 - Pilot bunch scrapes TAS towards IP
- 1 pilot bunch deposits 5x10⁻³ Gy in Pixel B-Layer
 - 10⁷ particles per cm²
 - 10⁷ times more than during normal operation at design luminosity

- Wrong setting of MCBX
 - Pilot bunch hits beam pipe close to Pixel detector
- Factor of 30 40 more

Pixel Study at the PS

- Fast extracted beam at 24 GeV/c
 - User selected shots of *n* (1 to 8) bunches; 213 bunches in total
 - 10¹¹ p per bunch
 - 42 ns long bunches separated by 256 ns
- 1 pixel module exposed "edge on" to beam
- For 1 bunch
 - 7.5 10⁸ p cross the module
 - 10¹⁰ times more hits, i.e. charge carriers produced than in normal operation
 - 3 Gy deposited in module
 - □ Factor 600 more than in "scraping" scenario
 - □ Factor 15-20 more than in "beam pipe hit" scenario
- Pixel module survived 213 exposures like this without apparent damage
 - Trip of LV power supply
 - Loss of configuration data

A. Andreazza et al, NIM A565, 2006, 50

MPWG 16-Nov-2007

Conclusion from Pixel Study

- In terms of dose (Gy) we have a
 - Safety factor 600 for the "scraping" scenario
 - Safety factor 15-20 for the "beam pipe hit" scenario
- If this is scaled to the same bunch length (370 ps vs 42 ns) these factors have to be divided by 100 (→ instantaneous dose)
 - → <u>Therefore ATLAS requests to set</u>

□ <u>"Safe Injection" flag to 5 • 10⁹</u>

<u>"Safe Beam" flag to the minimum intensity required for commissioning</u>

Worries and Questions to the Machine

- **Bocian scenarios** should be cross checked and followed up
 - This is important because the ATLAS simulation results depend dramatically on incident direction and position of collision
- What are the potential *accident scenarios during beam commissioning* which comprises a lot of steps
 - Aperture scans
 - "Safe beam" condition with masked instrumentation
 - Squeezing

. . . .

- What is the final word about *closed bumps* during normal operation
 - How big can they be at IP1
- What about *beam loss in IR1 due to miss-kicked beam* at extraction (see workshop summary)