The potential of multi-strange physics with PANDA at FAIR

Michael Papenbrock

Uppsala University

On behalf of the PANDA collaboration

Fysikdagarna, Lund June 15th, 2022

Outline

- Physics Objectives
- PANDA at FAIR
- Strangeness physics at PANDA
 - Hyperon spectroscopy
 - Hyperon spin observables
 - Hypernuclei
- Summary

Virtues of low-energy antiprotons

- Annihilations provide a gluon-rich environment
- All neutral, hidden-flavour, meson-like states accessible in formation
- Multi-strange and charmed $\overline{Y}Y$ final states in 2-body production
- Time-like structure observables with electron and muon "probes"
- Provide secondary hyperons that can form hypernuclei

Facility for Antiproton and Ion Research (FAIR)

Construction of FAIR

High Energy Storage Ring (HESR)

- Anti-protons with $1.5 < p_{beam} < 15 \; {\rm GeV}/c$
- Internal targets
 - Cluster-jet and pellet ($\bar{p}p$)
 - Foils (*pA*)
- Luminosity
 - Design $\sim 2 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - Phase One $\sim 10^{31} cm^{-2} s^{-1}$
- Quasi-continuous beam

PANDA – full setup

PANDA – Phase One setup

Construction of PANDA

Strangeness Physics with PANDA

What happens if we replace one of the light quarks in the nucleon with a heavier one?

- Main objectives
 - Structure and production dynamics of established states
 - Search for hitherto unknown states
 - Search for CP violation in hyperon decays

- Measured cross sections of ground state hyperons $\bar{p}p \rightarrow \bar{Y}Y$ 1-100 µb*
- Excited hyperon cross sections should be similar to those of ground-states**

Large expected production rates!

12 UPPSALA UNIVERSITET

*E. Klempt *et al.*, Phys. Rept. 368 (2002) 119-316 **V. Flaminio *et al.*, CERN-HERA 84-01

PANDA is a strangeness factory

- New simulation studies of single- and double-strange hyperons*
 - Exclusive measurements of
 - $\bar{p}p \to \bar{\Lambda}\Lambda, \Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+$
 - $\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+$
 - $\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+$
 - Ideal pattern recognition and PID
 - **Background using Dual Parton Model** ullet

p _{beam} (GeV/c)	Reaction	$\sigma(\mu b)$	$oldsymbol{arepsilon}(\%)$	Rate (s^{-1}) @ 10^{31} cm ⁻² s ⁻¹	S/B	Events / day	
1.64	$\bar{p}p ightarrow \overline{\Lambda}\Lambda$	64.0	16.0	44	114	$3.8 \cdot 10^{6}$	** 90% (
1.77	$\bar{p}p ightarrow \overline{\Sigma}{}^0 \Lambda$	10.9	5.3	2.4	>11**	207000	5070
6.0	$\bar{p}p ightarrow \overline{\Sigma}{}^0 \Lambda$	20	6.1	5.0	21	432000	
4.6	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 1	8.2	0.3	274	26000	
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 0.3	7.9	0.1	65	86000	13

*By W. Ikegami Andersson (PhD thesis, Uppsala 2020) and G. Perez Andrade (Master thesis, Uppsala 2019)

2.L

PANDA is a strangeness factory

- New simulation studies of single- and double-strange hyperons*
 - Exclusive measurements of

٠

B

•
$$\bar{p}p \to \bar{\Lambda}\Lambda, \Lambda \to p\pi^-, \bar{\Lambda} \to \bar{p}\pi^+$$

- $\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+$
- $\bar{n}n \to \overline{\Xi^+\Xi^-} \overline{\Xi^-} \to \Lambda \pi^- \Lambda \to n\pi^- \overline{\Xi^+} \to \overline{\Lambda}\pi^+ \overline{\Lambda} \to \bar{n}\pi^+$
 - PANDA will be a hyperon factory already during Phase One!

Approx 20 times larger rates with full luminosity!

1.64	$\bar{p}p \to \overline{\Lambda}\Lambda$	64.0	16.0	44	114	3.8 · 10 ⁶
1.77	$\bar{p}p ightarrow \overline{\Sigma}{}^0 \Lambda$	10.9	5.3	2.4	>11**	207000
6.0	$\bar{p}p ightarrow \overline{\Sigma}{}^0 \Lambda$	20	6.1	5.0	21	432000
4.6	$\bar{p}p \to \bar{\Xi}^+ \Xi^-$	~ 1	8.2	0.3	274	26000
7.0	$\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^-$	~ 0.3	7.9	0.1	65	86000

** 90% C.L.

*By W. Ikegami Andersson (PhD thesis, Uppsala 2020) and G. Perez Andrade (Master thesis, Uppsala 2019)

Hyperon spectroscopy

- How do quarks form baryons?
 - Which forces are involved?
 - What are the degrees of freedom?

Symmetric quark model

Molecule / hadronic d.o.f.

Hyperon spectroscopy

How do features of the light- and single strange baryon spectrum carry over to the multi-strange sector?

- Light baryon spectrum*
 - "Missing" states
 - Parity pattern
- Single strange spectrum
 - "Missing" states
 - Non-qqq features e.g. of $\Lambda(1405)^{**}$
- Multi-strange spectrum
 - Data scarce

*EPJA 48 (2012) 127, EPJA 10 (2001) 395 **PRL 114 (2015) 132002

*J. Puetz, PhD Thesis, Bonn University (2020), EPJA (2021) 57:149

Feasibility study of $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^- \pi^0$

- Simplified simulation framework
- $p_{beam} = 4.6 \text{ GeV}/c$
- $\sigma = 1 \mu b$ and $L = 10^{31} cm^{-2} s^{-1}$
- Continuum and resonant states $\Xi(1530)^-, \Xi(1690)^-, \Xi(1820)^-$
- Results*
 - Efficiency ~ 3.6%, $\frac{S}{B}$ ~ 22

UNIVERSITET

EPJA (2021) 57:149

Hyperon spin properties

• Accessible, e.g., through $I(\cos \theta_p) = N(1 + \alpha P_{\Lambda} \cos \theta_p)$

 $\overline{\Lambda}$

Λ

- α decay asymmetry, sensitive to CP violation
- CP symmetry: $\alpha = -\overline{\alpha}$
- P_{Λ} production related

Hyperon prospects with PANDA

Spin observables in production of single- and multistrange hyperons*

YY spin observables in $\bar{p}p$ collisions

- Density matrix of a hyperon given by
 - $\rho = \frac{1}{2j+1}\mathcal{I} + \sum_{L=1}^{2j} \frac{2j}{2j+1} \sum_{M=-L}^{L} Q_M^L r_M^L$
- Angular distributions of daughters given by operating T and taking trace $I = Tr(T\rho T^{\dagger}), \qquad T|\psi_i\rangle = |\psi_f\rangle$

• Fifteen polarisation parameters:

$$r_M^L, L = 1, 2, 3, M = -L, ..., L$$

- Eight are zero due to symmetry
- Determine r_{-1}^1 , r_{-1}^3 from Λ decay

$$I(\theta_p, \phi_p) = \frac{1}{4\pi} (1 + \alpha_\Omega \alpha_\Lambda \cos \theta_p + \alpha_\Lambda \left(\sqrt{\frac{3}{5}} r_{-1}^1 + \frac{1}{2\sqrt{10}} r_{-1}^3 \right) (\beta_\Omega \cos \phi_p + \gamma_\Omega \sin \phi_p) \sin \theta_p)$$

This also means
$$\frac{\beta_\Omega}{\gamma_\Omega} = \frac{\langle \cos \phi_p \rangle}{\langle \sin \phi_p \rangle}$$

- CP violation parameters β_{Ω} , γ_{Ω} can be determined to a sign for the first time $(\alpha^2 + \beta^2 + \gamma^2 = 1)$
- See also E. Perotti, J. Phys.: Conf. Ser. 1024 012019

 Ω

 $\bar{\Omega}^{-}$

pр

$\overline{\Omega}^+\Omega^-$ Polarisation at 7 GeV/c

- High luminosity
- Low cross section
- Idealised reconstruction and particle identification
- 80 days of data taking under ideal conditions

UNIVERSITE

$\overline{\Omega}^+\Omega^-$ Polarisation at 7 GeV/c

- High luminosity
- Low cross section
- Idealised reconstruction and particle identification
- 80 days of data taking under ideal conditions

Precision CP tests at BESIII

25 UNIVERSITE

Precision CP tests at BESIII

Article Open Access Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

<u>Nature</u> 606, 64–69 (2022) Cite this article

Table 1 | Summary of results

Parameter	This work	Previous result
a _ψ	0.586±0.012±0.010	0.58±0.04±0.08
ΔΦ	1.213±0.046±0.016rad	-
a₌	-0.376±0.007±0.003	-0.401±0.010
ϕ_{Ξ}	0.011±0.019±0.009rad	-0.037±0.014 rad
ā _z	0.371±0.007±0.002	-
$\bar{\phi}_{\pm}$	-0.021±0.019±0.007rad	-
av	0.757±0.011±0.008	0.750±0.009±0.004
ā,	-0.763±0.011±0.007	-0.758±0.010±0.007
ξ _P -ξ _S	(1.2±3.4±0.8)×10⁻²rad	-
$\delta_{P} - \delta_{S}$	(−4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad
A [≣] _{CP}	(6±13±6)×10 ⁻³	-
Δ φ ^Ξ _{CP}	(-5±14±3)×10 ⁻³ rad	-
A^A _{CP}	(-4±12±9)×10 ⁻³	(-6±12±7)×10 ⁻³
$\langle \phi_{\bar{z}} \rangle$	0.016±0.014±0.007rad	

* Phys. Rev. D 99, 056008 (2019) ** Phys. Rev. D 100, 114005 (2019)

- Formalism by Perotti et al.* and Adlarson & Kupsc**
- Exploits polarisation, entanglement, and sequential decays
- First measurement of weak phase difference
- First direct measurement of $\overline{\Xi}$ decay parameters
- Independent measurement of decay parameter $lpha_\Lambda$
- Strong phase difference consistent with zero
- What can PANDA do?
 - Binary production, high rates
 - Exclusive measurements
 - Exploit entanglement

Hadrons in Nuclei

- Multi-baryon interactions crucial to understand macroscopic systems such as neutron stars
- In PANDA, these interactions can be studies in*
 - Antihyperons in nuclei
 - Hyperatom spectroscopy
 - Hypernuclear spectroscopy

*Nucl. Phys. A 954, 323 (2016)

Hyperatoms and hypernuclei

C

 π

 π^{-}

Ξ⁻production p̄N→Ξ⁻Ξ

rescattering in primary target nucleus

deceleration in secondary target

capture of Ξ

p O

atomic cascade of $\Xi^{\scriptscriptstyle -}$

 Ξ -p \rightarrow $\Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

Alicia Sanchez Lorente, Hyperfine Interact 213, 41 (2012)

 \sim 33000 stopped Ξ per day!

28

UPPSALA UNIVERSITET

Josef Pochodzalla

y hyperatoms

hypernuclei

Summary

- PANDA is a next-generation antiproton facility for hadron and nuclear physics
- The physics programme consists of four pillars:
 - Nucleon structure
 - Strangeness physics
 - Charm and exotics
 - Hadrons in nuclei
- PANDA has great prospects in strangeness physics
 - Hyperon spectroscopy
 - Hyperon spin observables
 - Hypernuclei

Thank you for your attention!

Backup

Polarisation in $\overline{\Xi}^+\Xi^-$

- Decays: $\Xi^- \to \Lambda \pi^-$, $\Lambda \to \pi^- p$
- Three polarisation parameters:
- Directly related to P_x , P_y , P_z Symmetry $\Rightarrow P_x = P_z = 0$
- First decay $\Xi^- \to \Lambda \pi^- \Rightarrow \text{polarisation } P_y$ $I(\cos \theta_y) = \frac{1}{4\pi} (1 + \alpha P_y \cos \theta_y)$
- Polarisation can be extracted using moments $\left< \cos \theta_y \right> = \int_{-1}^{1} I(\cos \theta_y) \times \cos \theta_y \, d \cos \theta_y = \frac{3}{\alpha} P_y$

 r_1^1, r_0^1, r_{-1}^1

pр

- Decays: $\Omega^- \to \Lambda K$, $\Lambda \to \pi^- p$
- Fifteen polarisation parameters: r_M^L , L = 1,2,3, M = -L
- Eight are zero due to symmetry
- Angular distribution of first decay $\Omega^- \to \Lambda K$:

$$I(\theta_{\Lambda},\phi_{\Lambda}) = \frac{1}{4\pi} \left[1 + \frac{\sqrt{3}}{2} (1 - 3\cos^{2}\theta_{\Lambda})r_{0}^{2} - \frac{3}{2}\sin^{2}\theta_{\Lambda}\cos 2\phi r_{2}^{2} + \frac{3}{2}\sin 2\theta_{\Lambda}\cos\phi r_{1}^{2} - \frac{1}{40}\alpha\sin\theta_{\Lambda}(8\sqrt{15}r_{-1}^{1}\sin\theta_{\Lambda} + 9\sqrt{10}r_{-1}^{3}(3 + 5\cos 2\theta_{\Lambda}\sin\phi_{\Lambda}) + 30(3r_{2}^{3}\sin 2\phi_{\Lambda}\sin 2\theta_{\Lambda} + \sqrt{6}r_{3}^{3}\sin 3\phi\sin^{2}\theta_{\Lambda})) \right]$$

D

Ω

 $\bar{\Omega}^+$

pр

• Determine r_0^2 , r_1^2 , r_2^2 from Ω decay

- $\langle \sin \theta_{\Lambda} \rangle = \int_0^{\pi} \int_0^{2\pi} I(\theta_{\Lambda}, \phi_{\Lambda}) \times \frac{\sin \theta_{\Lambda}}{\sin \theta_{\Lambda}} \sin \theta_{\Lambda} d\theta_{\Lambda} d\phi_{\Lambda} = \frac{\pi}{32} (8 + \sqrt{3}r_0^2)$
- $\langle \cos \theta_{\Lambda} \cos \phi_{\Lambda} \rangle = \int_{0}^{\pi} \int_{0}^{2\pi} I(\theta_{\Lambda}, \phi_{\Lambda}) \times \cos \theta_{\Lambda} \cos \phi_{\Lambda} \sin \theta_{\Lambda} d\theta_{\Lambda} d\phi_{\Lambda} = -\frac{\pi}{32} r_{1}^{2}$
- $\langle \sin^2 \phi_{\Lambda} \rangle = \int_0^{\pi} \int_0^{2\pi} I(\theta_{\Lambda}, \phi_{\Lambda}) \times \sin^2 \phi_{\Lambda} \sin \theta_{\Lambda} d\theta_{\Lambda} d\phi_{\Lambda} = \frac{1}{4} (2 + r_2^2)$

- Determine r_{-1}^1, r_{-1}^3 from Λ decay $I(\theta_p, \phi_p) = \frac{1}{4\pi} (1 + \alpha_\Omega \alpha_\Lambda \cos \theta_p + \alpha_\Lambda \left(\sqrt{\frac{3}{5}} r_{-1}^1 + \frac{1}{2\sqrt{10}} r_{-1}^3 \right) (\beta_\Omega \cos \phi_p + \gamma_\Omega \sin \phi_p) \sin \theta_p)$ • This also means $\frac{\beta_\Omega}{\gamma_\Omega} = \frac{\langle \cos \phi_p \rangle}{\langle \sin \phi_p \rangle}$
- Four more polarisation parameters accessible similarly
- CP violation parameters β_{Ω} , γ_{Ω} can be determined to a sign for the first time $(\alpha^2 + \beta^2 + \gamma^2 = 1)$
- See also E. Perotti, J. Phys.: Conf. Ser. **1024** 012019

$\overline{\Omega}^+\Omega^-$ Polarisation at 15 GeV/c

- High luminosity
- Low cross section
- Idealised reconstruction and particle identification
- 80 days of data taking under ideal conditions

$\overline{\Omega}^+\Omega^-$ Polarisation at 15 GeV/c

- High luminosity
- Low cross section
- Idealised reconstruction and particle identification
- 80 days of data taking under ideal conditions

 $Cos \theta_{\Omega^{+}}$ UPPSALA UNIVERSITET

Hyperatoms and hypernuclei

- Large $\overline{Y}Y$ production rates
 - Opportunity for multi-strange physics
- Secondary target
- Germanium detector array for γ-spectroscopy

Antihyperons in nuclei

- Study antihyperon potential in nuclei
- Exploit plentiful production of $\overline{Y}Y$ pairs near threshold
- Benchmark for describing hyperon dynamics in heavy-ion collisions

