Neutrinos from neutron star mergers

Gail McLaughlin North Carolina State University

Collaborators: Jenni Barnes, Kelsey Lund, Erika Holmbeck, Evan Grohs, Jim Kneller, Matt Mumpower, Sherwood Richers, Rebecca Surman, Yonglin Zhu

A number of possible outcomes of a binary neutron star merger

Fig. From Biaottta and Rezzolla 2017

Neutrino physics matters for the outcome of element synthesis

Does all the r-process material in the galaxy come from neutron star mergers?

Which r-process elements do neutron star mergers make?
r-process: rapid neutron capture process of element synthesis.

The r-process, what is it?

The rapid neutron capture process of nucleosynthesis

$$
\begin{aligned}
& A(Z, N)+n \leftrightarrow A+1(Z, N+1)+\gamma \\
& A(Z, N) \rightarrow A(Z+1, N-1)+e^{-}+\bar{\nu}_{e}
\end{aligned}
$$

Electromagnetic counterpart to

the neutron star merger GW signal

Material with significant opacity is the best fit to the data Slide credit: Dan Kasan Suggests lanthanides were made in the merger.

Where are the lanthanides?

Metal poor stars

Rare earths and third peak often seen together

Fig from Holmbeck et al 2019

Decaying nuclei leave an imprint (in principle) on the light curve

Whether you can get to fissioning nuclei or not depends on the number of neutrons available for capture

Δ

Fissions and alpha decays

How many neutrons were captured?

Effects both light curve and abundance pattern

Neutrino physics changes the outcome of element synthesis

- tidal ejecta
- collisional ejecta

- disk/hypermassive NS outflow
- outflow from viscous heating

fig. from Perego et al 2014

The weak interaction matters

How neutrinos influence nucleosynthesis

Neutrinos change the ratio of neutrons to protons

$$
\begin{aligned}
& \nu_{e}+n \rightarrow p+e^{-} \\
& \bar{\nu}_{e}+p \rightarrow n+e^{+}
\end{aligned}
$$

How much does it matter?

Malkus '16

Flavor matters for nucleosynthesis

Neutrinos change the ratio of neutrons to protons

$$
\begin{gathered}
\nu_{e}+n \rightarrow p+e^{-} \\
\bar{\nu}_{e}+p \rightarrow n+e^{+}
\end{gathered}
$$

Oscillations change the spectra of $\nu_{e} \mathrm{~s}$ and $\bar{\nu}_{e} \mathrm{~s}$

$$
\begin{aligned}
& \nu_{e} \leftrightarrow \nu_{\mu}, \nu_{\tau} \\
& \bar{\nu}_{e} \leftrightarrow \bar{\nu}_{\mu}, \bar{\nu}_{\tau}
\end{aligned}
$$

Mergers have less ν_{μ}, ν_{τ} than ν_{e} and $\bar{\nu}_{e}$
\rightarrow oscillation reduces numbers of $\nu_{e}, \bar{\nu}_{e}$

Will neutrinos transform in mergers?

Answer, almost certainly, is yes

Zhu et al

Neutrinos can be described by a density matrix

Tells you how likely you are to measure the neutrino as electron type

Tells you how likely you are to measure the neutrino In an x (mu or tau) state

Neutrinos can oscillate (flavor transform)

$$
\begin{aligned}
\imath \frac{D \rho}{D t} & =[\mathbf{H}, \rho]+\mathrm{ic} \\
\imath \frac{D \bar{\rho}}{D t} & =[\overline{\mathbf{H}}, \bar{\rho}]+\mathrm{ic}
\end{aligned}
$$

Collision term

Convective derivative
Hamiltonian

Hamiltonian creates non-linearity

$\mathbf{H}=\mathbf{H}_{\text {vac }}+\mathbf{H}_{\mathrm{M}}+\mathbf{H}_{\mathrm{SI}}$ $\overline{\mathbf{H}}=\mathbf{H}_{\text {vac }}-\mathbf{H}_{\mathrm{M}}-\mathbf{H}_{\mathrm{SI}}^{*}$
 $$
\begin{aligned} & \imath \frac{D \rho}{D t}=[\mathbf{H}, \rho] \\ & \frac{D \bar{\rho}}{D t}=[\overline{\mathbf{H}}, \bar{\rho}] \end{aligned}
$$
 Neutrinos see a potential due to other neutrinos

Neutrinos see a potential due to the matter

Flavor and mass are not the same

Where and how these transformations might occur

fast flavor region

$\mathbf{H}=\mathbf{H}_{\text {vac }}+\mathbf{H}_{\mathrm{M}}+\mathbf{H}_{\mathrm{SI}}$
fig. from Malkus et al 2016
$\overline{\mathbf{H}}=\mathbf{H}_{\text {vac }}-\mathbf{H}_{\mathrm{M}}-\mathbf{H}_{\mathrm{SI}}^{*}$

Transformation closest to the emission: "fast flavor"

Fast flavor:

fastest transitions when inverse fluctuation wavelength (k) is similar to the difference in number density between neutrinos and antineutrinos
and
there is a "crossing"
(Sawyer, Friedland, Johns, Fuller, Balantekin, Patwardhan, Suliga, Wu and many more)

Crossings in BNS remnant

Grohs, Richers et al in prep, original (classical) simulation from Francois Foucart

Ways to analyze flavor transformation

- Stability analysis \rightarrow Find a growth rate
- (Toy Models)
- Particle in cell methods \rightarrow track everything about every neutrino
- More approximate methods \rightarrow moments

Toward inclusion in simulation: less exact methods: e.g. moments

What? Represent all the neutrinos at each point in space as four quantities (e.g. energy density and flux) and evolve these

Why? Possible way to eventually integrate into neutron star merger, supernova simulations

Numerical risk: Truncating an infinite tower of moments (Fuller, Johns, Burrows, Duan ...)

Use two moments

$$
\begin{aligned}
& E(t, \vec{r}, q)=\frac{1}{4 \pi}\left(\frac{q}{2 \pi \hbar c}\right)^{3} \int d \Omega_{p} f(t, \vec{r}, \vec{p}) \\
& \vec{F}(t, \vec{r}, q)=\frac{1}{4 \pi}\left(\frac{q}{2 \pi \hbar c}\right)^{3} \int d \Omega_{p} \hat{p} f(t, \vec{r}, \vec{p}) \\
& P(t, \vec{r}, q)=\frac{1}{4 \pi}\left(\frac{q}{2 \pi \hbar c}\right)^{3} \int d \Omega_{p} \hat{p} \otimes \hat{p} f(t, \vec{r}, \vec{p})
\end{aligned}
$$

Use Energy and flux moments, but then need a closure: $P=F_{\text {closure }}$ (energy, flux)

Crossings in BNS remnant

Grohs et al in prep

Fast flavor oscillations above a BNS merger with moments using FLASH

(Grohs et al in prep.)

Growth and saturation, BNS, moments vs PIC

Growth and saturation, BNS, moments vs PIC

Grohs et al in prep

Fourier transform BNS, moments vs PIC

Conclusions

We need to understand neutrinos in astrophysical systems to accurately predict observables including r-process

Involves solving the quantum kinetic equations in astrophysical environments

Starting to make progress on this using moment based methods

To keep mind: Astrophysical objects will make better laboratories for neutrino physics if we make progress on understanding systems with large numbers of neutrinos

