Aspects of Neutrino Theory

K.S. Babu

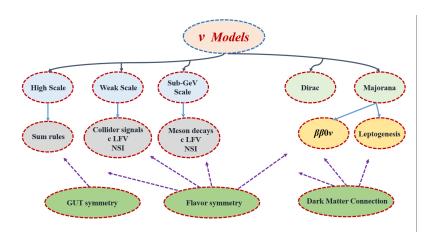
Oklahoma State University

PPC 2022: XV Conference on Particle Physics & Cosmology
Washington University in St. Louis
June 6-10, 2022

Current knowledge of 3-neutrino oscillations

					NuFIT 5.0 (2020)	
		Normal Ore	dering (best fit)	Inverted Ordering ($\Delta \chi^2 = 2.7$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
heric data	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.86$	$33.45^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.87$	
	$\sin^2 \theta_{23}$	$0.570^{+0.018}_{-0.024}$	$0.407 \rightarrow 0.618$	$0.575^{+0.017}_{-0.021}$	$0.411 \rightarrow 0.621$	
dsor	$\theta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
without SK atmospheric data	$\sin^2 \theta_{13}$	$0.02221^{+0.00068}_{-0.00062}$	$0.02034 \to 0.02430$	$0.02240^{+0.00062}_{-0.00062}$	$0.02053 \to 0.02436$	
	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$	
	$\delta_{\mathrm{CP}}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 7.1$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	
lata	$\theta_{12}/^{\circ}$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45^{+0.78}_{-0.75}$	$31.27 \rightarrow 35.87$	
2	$\sin^2 \theta_{23}$	$0.573^{+0.016}_{-0.020}$	$0.415 \rightarrow 0.616$	$0.575^{+0.016}_{-0.019}$	$0.419 \rightarrow 0.617$	
with SK atmospheric data	$\theta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$	
	$\sin^2 \theta_{13}$	$0.02219^{+0.00062}_{-0.00063}$	$0.02032 \to 0.02410$	$0.02238^{+0.00063}_{-0.00062}$	$0.02052 \to 0.02428$	
	$\theta_{13}/^{\circ}$	$8.57^{+0.12}_{-0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$	
	$\delta_{\mathrm{CP}}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$	

Roadmap for Neutrino Models



3

Effective Field Theory for neutrino masses

- ► Neutrino masses are zero in the Standard Model. Observed oscillations require new physics beyond Standard Model
- ► Neutrino masses and oscillations can be explained in terms of the celebrated Weinberg operator
- ▶ It is the leading operator in Standard Model EFT and arises at dimension-five, suppressed by one power of an inverse mass scale
- It violates lepton number by two units and generates neutrino masses:

$$\mathcal{O}_{1} = \frac{\kappa_{ab}}{2} (L_{a}^{i} L_{b}^{j}) H^{k} H^{l} \epsilon_{ik} \epsilon_{jl}$$

$$= \frac{\kappa_{ab}}{2} (\nu_{a} H^{0} - \ell_{a} H^{+}) (\nu_{b} H^{0} - \ell_{b} H^{+})$$

$$\Rightarrow (M_{\nu})_{ab} = (\kappa)_{ab} v^{2}$$

ightharpoonup $\kappa^{-1} \sim (10^{14} \ {
m GeV})$ can be inferred from data

ļ

Strong reasons to go beyond EFT

- ► EFT description cannot be the end goal, or else important phenomena would be missed
- Mhat if neutrinos are Dirac particles? \mathcal{O}_1 is then the wrong description
- ▶ What if neutrino masses arose from d = 7 operators or d = 9 operators in a fundamental theory, and not through \mathcal{O}_1 ?
- ► Even when the scale of new physics is beyond reach of current experiments, opening the EFT operator can give new insights
- ► An example is baryon asymmetry generation via leptogensis
- ▶ Requires opening up the Weinberg operator. Baryon asymmetry originates from the decays of N^c , the mediator of the operator \mathcal{O}_1

5

Origin of neutrino mass: Seesaw mechanism

Adding right-handed neutrino N^c which transforms as singlet under $SU(2)_L$,

$$\mathcal{L} = f_{\nu} \left(L \cdot H \right) N^{c} + \frac{1}{2} M_{R} N^{c} N^{c}$$

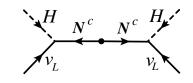
▶ Integrating out the N^c , $\Delta L = 2$ operator is induced:

$$\mathcal{L}_{ ext{eff}} = -rac{f_{
u}^2}{2}rac{ig(L\cdot Hig)ig(L\cdot Hig)}{M_{P}}$$

► Once *H* acquires VEV, neutrino mass is induced:

$$m_{
u} \simeq f_{
u}^2 rac{v^2}{M_R}$$

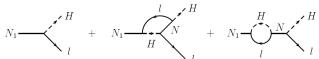
▶ For $f_{\nu}v \simeq 100$ GeV, $M_R \simeq 10^{14}$ GeV.



Minkowski (1977) Yanagida (1979) Gell-Mann, Ramond, Slansky (1980) Mohapatra & Senjanovic (1980)

Baryogenesis via leptogenesis and type-I seesaw

- ► In the early history of the universe, a lepton asymmetry may be dynamically generated in the decay of *N* Fukugita, Yanagida (1986)
- ▶ N being a Majorana fermion can decay to L + H as well as $\overline{L} + H^*$



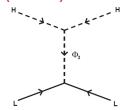
- ► Three Sakharov conditions can be satisfied: *B* violation via electroweak sphaleron, *C* and *CP* violation in Yukawa couplings of *N*, and out of equilibrium condition via expanding universe
- ▶ Lepton asymmetry in decay of N_1 (with $M_1 \ll M_{2,3}$):

$$arepsilon_1 \simeq rac{3}{16\pi} rac{1}{(f_
u f_
u^\dagger)_{11}} \sum_{i=2,2} \mathrm{Im} \left[(f_
u f_
u^\dagger)_{i1}^2
ight] rac{M_1}{M_i}$$

- $ightharpoonup arepsilon \sim 10^{-6}$ can explain observed baryon asymmetry of the universe
- ▶ Indirect tests in Majorana nature of ν and in CP violation in oscillations

7

Seesaw mechanism (cont.)



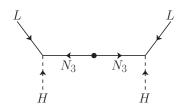
Type II seesaw: $\Phi_3 \sim (1,3,1)$

Mohapatra & Senjanovic (1980) Schechter & Valle (1980) Lazarides, Shafi, & Wetterich (1981)

Type III seesaw: $N_3 \sim (1,3,0)$

Foot, Lew, He, & Joshi (1989)

Ma (1998)



- \triangleright Φ_3 abd N_3 contain charged particles which can be looked for at LHC
- ► Eg: $\Phi^{++} \rightarrow \ell^+ \ell^+$, $\Phi^{++} \rightarrow W^+ W^+$ decays would establish lepton number violation

8

Dirac Neutrino Models

- ▶ Neutrinos may be Dirac particles without lepton number violation
- Oscillation experiments cannot distinguish Dirac neutrinos from Majorana neutrinos
- Spin-flip transition rates (in stars, early universe) are suppressed by small neutrino mass:

$$\Gamma_{\rm spin-flip} \approx \left(\frac{m_{\nu}}{E}\right)^2 \Gamma_{\rm weak}$$

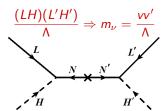
- Neutrinoless double beta decay discovery would establish neutrinos to be Majorana particles
- ▶ If neutrinos are Dirac, it would be nice to understand the smallness of their mass
- lacktriangle Models exist which explain the smallness of Dirac m_{ν}
- "Dirac leptogenesis" can explain baryon asymmetry
 Dick, Lindner, Ratz, Wright (2000)

Dirac Seesaw Models

- ▶ Dirac seesaw can be achieved in Mirror Models Lee, Yang (1956); Foot, Volkas (1995); Berezhiani, Mohapatra (1995), Silagadze(1997)
- ► Mirror sector is a replica of Standard Model, with new particles transforming under mirror gauge symmetry:

$$L = \begin{pmatrix} \nu \\ e \end{pmatrix}_L; \quad H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}; \quad L' = \begin{pmatrix} \nu' \\ e' \end{pmatrix}_L; \quad H' = \begin{pmatrix} H'^+ \\ H'^0 \end{pmatrix}$$

► Effective dimension-5 operator induces small Dirac mass:



▶ B - L may be gauged to suppress Planck-induced Weinberg operator $(LLHH)/M_{Pl}$ that would make neutrino pseudo-Dirac particle

Dirac Neutrinos from Left-Right Symmetry

- ► In left-right symmetric models with a "universal seesaw", neutrinos are naturally Dirac particles
- ▶ Gauge symmetry is extended to $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$
- ► These models are motivated on several grounds:
 - Provide understanding of Parity violation
 - Better understanding of smallness of Yukawa couplings
 - Requires right-handed neutrinos to exist
 - Provide a solution to the strong CP problem via Parity

```
Davidson, Wali (1987) – universal seesaw Babu, He (1989) – Dirac neutrino Babu, Mohapatra (1990) – solution to strong CP problem via parity Babu, Dutta, Mohapatra (2018) – R_{D^*} solution Craig, Garcia Garcia, Koszegi, McCune (2020) – flavor constraints Babu, He, Su, Thapa (2022) – neutrino oscillations
```

Left-Right Symmetry

► Fermion transformation:

$$Q_L (3,2,1,1/3) = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \qquad Q_R (3,1,2,1/3) = \begin{pmatrix} u_R \\ d_R \end{pmatrix},$$

$$\Psi_L (1,2,1,-1) = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \qquad \Psi_R (1,1,2,-1) = \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}.$$

Vector-like fermions are introduced to realize seesaw for charged fermion masses:

$$P(3,1,1,4/3), N(3,1,1,-2/3), E(1,1,1,-2)$$
.

Higgs sector is very simple:

$$\chi_L (1, 2, 1, 1) = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \end{pmatrix}, \quad \chi_R (1, 1, 2, 1) = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix}$$

 $\checkmark \langle \chi_R^0 \rangle = \kappa_R$ breaks $SU(2)_R \times U(1)_X$ down to $U(1)_Y$, and $\langle \chi_L^0 \rangle = \kappa_L$ breaks the electroweak symmetry with $\kappa_R \gg \kappa_L$

Seesaw for charged fermions

Yukaw interactions:

$$\mathcal{L} = y_u \left(\bar{Q}_L \tilde{\chi}_L + \bar{Q}_R \tilde{\chi}_R \right) P + y_d \left(\bar{Q}_L \chi_L + \bar{Q}_R \chi_R \right) N + y_\ell \left(\bar{\Psi}_L \chi_L + \bar{\Psi}_R \chi_R \right) E + h.c.$$

Vector-like fermion masses:

$$\mathcal{L}_{\mathrm{mass}} = \textit{M}_{\textit{p}^0} \ \bar{\textit{P}} \textit{P} + \textit{M}_{\textit{N}^0} \ \bar{\textit{N}} \textit{N} + \textit{M}_{\textit{E}^0} \ \bar{\textit{E}} \textit{E}$$

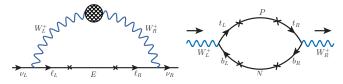
► Seesaw for charged fermion masses:

$$M_F = \begin{pmatrix} 0 & Y_{\kappa_L} \\ Y^{\dagger}_{\kappa_R} & M \end{pmatrix} \Rightarrow m_f = \frac{Y^2_{\kappa_L \kappa_R}}{M}$$

- $\theta_{QCD} = 0$ due to Parity; ArgDet $(M_U M_D) = 0$; induced $\overline{\theta} = 0$ at one-loop; small and finite $\overline{\theta}$ arises at two-loop
- ► There is no seesaw for neutrinos, since there is no corresponding singlet fermion

Two-loop Dirac Neutrino Masses

- ► Higgs sector is very simple: $\chi_L(1, 2, 1, 1/2) + \chi_R(1, 1, 2, 1/2)$
- \triangleright $W_L^+ W_R^+$ mixing is absent at tree-level in the model
- ▶ $W_L^+ W_R^+$ mixing induced at loop level, which in turn generates Dirac neutrino mass at two loop Babu, He (1989)



- Flavor structure of two loop diagram needs to be studied to check consistency
- Oscillation date fits well within the model regardless of Parity breaking scale Babu, He, Su, Thapa (2022)

Neutrino Fit in Two-loop Dirac Mass Model

Oscillation	3σ range	Model prediction				
parameters	NuFit5.1	BP I (NH)	BP II (NH)	BP III (IH)	BP IV (IH)	
$\Delta m_{21}^2 (10^{-5} \text{ eV}^2)$	6.82 - 8.04	7.42	7.32	7.35	7.30 2.52	
$\Delta m_{23}^2 (10^{-3} \text{ eV}^2) (IH)$	2.410 - 2.574	-		2.48		
$\Delta m_{31}^2 (10^{-3} \text{ eV}^2) (\text{NH})$	2.43 - 2.593	2.49	2.46	-	-	
$\sin^2 \theta_{12}$	0.269 - 0.343	0.324	0.315	0.303	0.321	
$\sin^2 \theta_{23}$ (IH)	0.410 - 0.613	-	-	0.542	0.475	
$\sin^2 \theta_{23}$ (NH)	0.408 - 0.603	0.491	0.452	-	-	
$\sin^2 \theta_{13}$ (IH)	0.02055 - 0.02457	-	-	0.0230	0.0234	
$\sin^2 \theta_{13}(NH)$	0.02060 - 0.02435	0.0234	0.0223	-	-	
δ _{CP} (IH)	192 - 361	-	-	271°	296°	
δ_{CP} (NH)	105 - 405	199°	200°	-	-	
m _{light} (10	0.66	0.17	0.078	4.95		
M_{E_1}/M_V	917	321.3	639	3595		
M_{E_2}/M_V	0.650	19.3	1.54	5.03		
M_{E_3}/M_V	0.019	1.26	0.054	2.94		

- ► Ten parameters to fit oscillation data
- ▶ Both normal ordering and inverted ordering allowed
- Dirac CP phase is unconstrained
- ► Left-right symmetry breaking scale is not constrained

Tests with N_{eff} in Cosmology

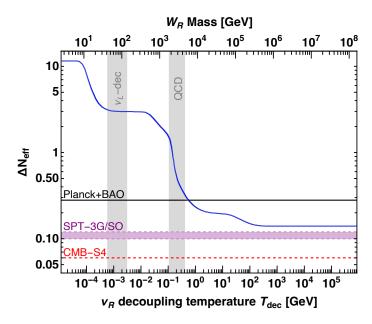
ightharpoonup Dirac neutrino models of this type will modify $N_{
m eff}$ by about 0.14

$$\Delta N_{ ext{eff}} \simeq 0.027 \left(rac{106.75}{g_{\star}\left(T_{ ext{dec}}
ight)}
ight)^{4/3} g_{ ext{eff}}$$
 $g_{ ext{eff}} = (7/8) imes (2) imes (3) = 21/4$

► Can be tested in CMB measurements: $N_{\rm eff} = 2.99 \pm 0.17$ (Planck+BAO)

$$egin{aligned} G_F^2 \left(rac{M_{W_L}}{M_{W_R}}
ight)^4 T_{
m dec}^5 &pprox \sqrt{g^*(T_{
m dec})} rac{T_{
m dec}^2}{M_{
m Pl}} \ T_{
m dec} &\simeq 400 \; {
m MeV} \left(rac{g_*\left(T_{
m dec}
ight)}{70}
ight)^{1/6} \left(rac{M_{W_R}}{5 \; {
m TeV}}
ight)^{4/3} \end{aligned}$$

 \blacktriangleright Present data sets a lower limit of 7 TeV on W_R mass

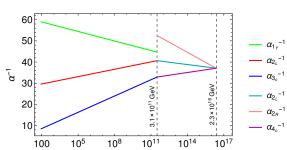


Unification of Forces & Matter in SO(10)

16 members of a family fit into a spinor of SO(10)

First 3 spins refer to color, last two are weak spins

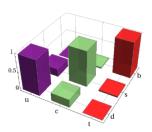
$$Y = \frac{1}{3}\Sigma(C) - \frac{1}{2}\Sigma(W)$$



Disparity in Quark & Lepton Mixings

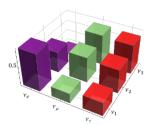
Quark Mixings

$$V_{CKM} \sim \begin{bmatrix} 0.976 & 0.22 & 0.004 \\ -0.22 & 0.98 & 0.04 \\ 0.007 & -0.04 & 1 \end{bmatrix}$$



Leptonic Mixings

$$V_{CKM} \sim egin{bmatrix} 0.976 & 0.22 & 0.004 \\ -0.22 & 0.98 & 0.04 \\ 0.007 & -0.04 & 1 \end{bmatrix} \quad U_{PMNS} \sim egin{bmatrix} 0.85 & -0.54 & 0.16 \\ 0.33 & 0.62 & -0.72 \\ -0.40 & -0.59 & -0.70 \end{bmatrix}$$



Yukawa Sector of Minimal SO(10)

$$16 \times 16 = 10_s + 120_a + 126_s$$

- ► At least two Higgs fields needed for family mixing
- Symmetric 10_H and $\overline{126}$ is the minimal model

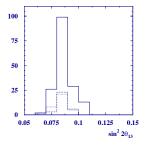
$$W_{SO(10)}^{\text{Yukawa}} = 16^T \left(Y_{10} \, 10_H + Y_{126} \overline{126}_H \right) 16 \ .$$

$$\begin{array}{rcl} M_U & = & v_u^{10} \, Y_{10} + v_u^{126} \, Y_{126} \\ M_D & = & v_d^{10} \, Y_{10} + v_d^{126} \, Y_{126} \\ M_E & = & v_d^{10} \, Y_{10} - 3 v_d^{126} \, Y_{126} \\ M_{\nu_D} & = & v_u^{10} \, Y_{10} - 3 v_u^{126} \, Y_{126} \\ M_R & = & Y_{126} \, V_R \end{array}$$

20

Minimal Yukawa sector of SO(10)

- ▶ 12 parameters plus 7 phases to fit 18 observed quantities
- ► This setup fits all obsevables quite well
- ► Large neutrino mixings coexist with small quark mixings
- \triangleright θ_{13} prediction turned out to be correct



Babu, Mohapatra (1993); Bajc, Senjanovic, Vissani (2001); (2003); Fukuyama, Okada (2002); Goh, Mohapatra, Ng (2003); Bajc, Melfo, Senjanovic, Vissani (2004); Bertolini, Malinsky, Schwetz (2006); Babu, Macesanu (2005); Dutta, Mimura, Mohapatra (2007); Aulakh et al (2004); Bajc, Dorsner, Nemevsek (2009); Joshipura, Patel (2011); Dueck, Rodejohann (2013); Ohlsson, Penrow (2019); Babu, Bajc, Saad (2018); Babu, Saad (2021)

Best fit values for fermion masses and mixings

Observables	SUSY			non-SUSY			
(masses in GeV)	Input	Best Fit	Pull	Input	Best Fit	Pull	
$m_u/10^{-3}$	0.502 ± 0.155	0.515	0.08	0.442 ± 0.149	0.462	0.13	
m_c	0.245 ± 0.007	0.246	0.14	0.238 ± 0.007	0.239	0.18	
m_t	90.28 ± 0.89	90.26	-0.02	74.51 ± 0.65	74.47	-0.05	
$m_b/10^{-3}$	$0.839 {\pm} 0.17$	0.400	-2.61	1.14 ± 0.22	0.542	-2.62	
$m_s/10^{-3}$	16.62 ± 0.90	16.53	-0.09	$21.58{\pm}1.14$	22.57	0.86	
m_b	0.938 ± 0.009	0.933	-0.55	0.994 ± 0.009	0.995	0.19	
$m_e/10^{-3}$	$0.3440{\pm}0.0034$	0.344	0.08	0.4707 ± 0.0047	0.470	-0.03	
$m_{\mu}/10^{-3}$	72.625 ± 0.726	72.58	-0.05	99.365 ± 0.993	99.12	-0.24	
$m_{ au}$	1.2403 ± 0.0124	1.247	0.57	1.6892 ± 0.0168	1.688	-0.05	
$ V_{us} /10^{-2}$	$22.54{\pm}0.07$	22.54	0.02	$22.54{\pm}0.06$	22.54	0.06	
$ V_{cb} /10^{-2}$	3.93 ± 0.06	3.908	-0.42	$4.856{\pm}0.06$	4.863	0.13	
$ V_{ub} /10^{-2}$	$0.341{\pm}0.012$	0.341	0.003	$0.420{\pm}0.013$	0.421	0.10	
δ_{CKM}°	69.21 ± 3.09	69.32	0.03	69.15 ± 3.09	70.24	0.35	
$\Delta m_{21}^2/10^{-5} (eV^2)$	$8.982{\pm}0.25$	8.972	-0.04	$12.65{\pm}0.35$	12.65	-0.01	
$\Delta m_{31}^2/10^{-3} (eV^2)$	3.05 ± 0.04	3.056	0.02	4.307 ± 0.059	4.307	0.006	
$\sin^2 \theta_{12}$	0.318 ± 0.016	0.314	-0.19	0.318 ± 0.016	0.316	-0.07	
$\sin^2 \theta_{23}$	0.563 ± 0.019	0.563	0.031	0.563 ± 0.019	0.563	0.01	
$\sin^2 \theta_{13}$	0.0221 ± 0.0006	0.0221	-0.003	0.0221 ± 0.0006	0.0220	-0.16	
δ_{CP}°	224.1 ± 33.3	240.1	0.48	224.1 ± 33.3	225.1	0.03	
χ^2	-	-	7.98	-	-	7.96	

Dirac CP phase

Multiple χ^2 minima make δ_{CP} prediction difficult



Babu, Bajc, Saad (2018)

Proton decay predictions

- ▶ Proton decay branching ratios determined by neutrino oscillation fits
- Mediated by superheavy gauge bosons
- ▶ Lifetime has large uncertainties, $\tau_p \approx (10^{32} 10^{36})$ yrs.

Prediction of branching ratios

$$\Gamma(p \to \pi^0 e^+) \to 47\%$$

$$\Gamma(p \to \pi^0 \mu^+) \to 1\%$$

$$\Gamma(p \to \eta^0 e^+) \to 0.20\%$$

$$\Gamma(p \to \eta^0 \mu^+) \to 0.00\%$$

$$\Gamma(p \to K^0 e^+) \to 0.16\%$$

$$\Gamma(p \to K^0 \mu^+) \to 3.62\%$$

$$\Gamma(p \to \pi^+ \overline{\nu}) \to 48\%$$

$$\Gamma(p \to K^+ \overline{\nu}) \to 0.22\%$$

Nemesvek, Bajc, Dorsner (2009) Babu, Khan (2015)

Radiative neutrino mass generation

- ► An alternative to seesaw is radiative neutrino mass generation, where neutrino mass is absent at tree level, but arises via quantum loop corrections
- ► The smallness of neutrino mass is explained by loop and chiral suppressions
- ► Loop diagrams may arise at 1-loop, 2-loop or 3-loop levels
- ▶ New physics scale typically near TeV and thus accessible to LHC
- ► Further tests in observable LFV processes and as nonstandard neutrino interaction (NSI) in oscillations

Effective $\Delta L = 2$ Operators

```
\mathcal{O}_1 = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{il}
\mathcal{O}_2 = \mathbf{L}^i \mathbf{L}^j \mathbf{L}^k \mathbf{e}^c \mathbf{H}^l \epsilon_{ii} \epsilon_{kl}
\mathcal{O}_3 = \{ L^i L^j Q^k d^c H^l \epsilon_{ii} \epsilon_{kl}, L^i L^j Q^k d^c H^l \epsilon_{ik} \epsilon_{il} \}
\mathcal{O}_4 = \{L^i L^j \bar{Q}_i \bar{u}^c H^k \epsilon_{ik}, L^i L^j \bar{Q}_k \bar{u}^c H^k \epsilon_{ii}\}
\mathcal{O}_5 = L^i L^j Q^k d^c H^l H^m \bar{H}_i \epsilon_{il} \epsilon_{km}
\mathcal{O}_6 = L^i L^j \bar{Q}_k \bar{u}^c H^l H^k \bar{H}_i \epsilon_{il}
\mathcal{O}_7 = L^i Q^j \bar{e^c} \bar{Q}_k H^k H^l H^m \epsilon_{il} \epsilon_{im}
\mathcal{O}_8 = L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ii}
\mathcal{O}_{0} = L^{i}L^{j}L^{k}e^{c}L^{l}e^{c}\epsilon_{ii}\epsilon_{kl}
\mathcal{O}_1' = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{il} H^{*m} H_m
```

```
Babu & Leung (2001) de Gouvea & Jenkins (2008) Angel & Volkas (2012) Cai, Herrero-Garcia, Schmidt, Vicente, Volkas (2017) Lehman (2014) — all d=7 operators Li, Ren, Xiao, Yu, Zheng (2020); Liao, Ma (2020) — all d=9 operators
```

Operator \mathcal{O}_2 and the Zee model

Introduce a singly charged scalar and a second Higgs doublet to standard model:

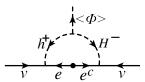
$$\mathcal{L} = f_{ij}L_i^aL_j^bh^+\epsilon_{ab} + \mu H^a\Phi^bh^-\epsilon_{ab} + \text{h.c.}$$

$$\qquad \qquad \qquad \downarrow$$

$$\mathcal{O}_2 = L^iL^jL^ke^cH^l\epsilon_{ij}\epsilon_{kl}$$

Zee (1980)

Neutrino mass arises at one-loop.



► A minimal version of this model in which only one Higgs doublet couples to a given fermion sector with a Z₂ symmetry yields: Wolfenstein (1980)

$$m_
u = \left(egin{array}{ccc} 0 & m_{e\mu} & m_{e au} \ m_{e\mu} & 0 & m_{\mu au} \ m_{e au} & m_{u au} & 0 \end{array}
ight), \quad m_{ij} \simeq rac{f_{ij}}{16\pi^2} rac{\left(m_i^2 - m_j^2
ight)}{\Lambda}$$

It requires $\theta_{12} \simeq \pi/4 \rightarrow \text{ruled out by solar} + \text{KamLAND data}$.

Koide (2001); Frampton et al. (2002); He (2004)

Neutrino oscillations in the Zee model

- ► Neutrino oscillation data can be fit to the Zee model consistently without the Z₂ symmetry
- ► Some benchmark points for Yukawa couplings of second doublet:

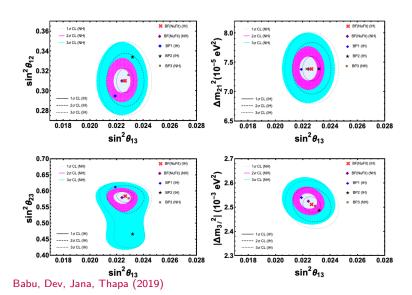
$$BP I: Y = \begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$

$$BP II: Y = \begin{pmatrix} 0 & Y_{e\mu} & Y_{e\tau} \\ Y_{\mu e} & 0 & Y_{\mu\tau} \\ 0 & Y_{\tau\mu} & Y_{\tau\tau} \end{pmatrix}$$

$$BP III: Y = \begin{pmatrix} Y_{ee} & 0 & Y_{e\tau} \\ 0 & Y_{\mu\mu} & Y_{\mu\tau} \\ Y_{\tau e} & 0 & Y_{\tau\tau} \end{pmatrix}$$

Babu, Dev, Jana, Thapa (2019)

Neutrino fit in the Zee model



Neutrino Non-Standard Interactions (NSI)

- Neutrino oscillation picture would change if there are non-standard interactions
- ► Modification of matter effects most important
- ► EFT for neutrino NSI:

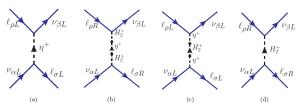
▶ Effective Hamiltonian for neutrino propagation in matter is now:

$$H = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \sqrt{2} G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^{\star} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^{\star} & \varepsilon_{\mu\tau}^{\star} & \varepsilon_{\tau\tau} \end{pmatrix}$$

 $ightharpoonup \epsilon_{\alpha\beta}$ measure of NSI normalized to weak interaction strength

Neutrino NSI in the Zee model

► The two charged scalars of the Zee model mediate NSI



► The NSI parameters are given by:

$$\varepsilon_{\alpha\beta} = \frac{1}{4\sqrt{2}\mathit{G}_{\mathit{F}}}\mathit{Y}_{\alpha\mathsf{e}}\mathit{Y}_{\beta\mathsf{e}}^{*}\left(\frac{\sin^{2}\varphi}{\mathit{m}_{\mathit{h}^{+}}^{2}} + \frac{\cos^{2}\varphi}{\mathit{m}_{\mathit{H}^{+}}^{2}}\right)$$

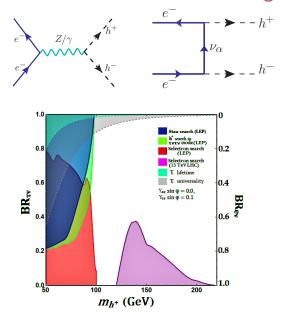
 Constrained by LHC and LEP direct limits; cLFV; precision electroweak tests; neutrino oscillation data; and theory
 Babu, Dev, Jana, Thapa (2019)

31

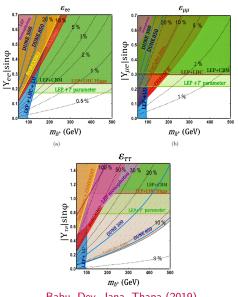
Constraints on Zee model parameters

- ightharpoonup Electroweak T parameter sets limits on mixing $\sin \varphi$
- \blacktriangleright $\mu \rightarrow e + \gamma$ type processes limit products of couplings
- $ightharpoonup \mu
 ightarrow 3e$ type processes lead to further constraints
- ightharpoonup T lifetime and universality constraints
- ▶ Lepton universality in W^{\pm} decays
- ► Theoretical constraint from avoiding charge breaking minima
- ► LEP direct search limits on charged scalars
- Constraints from LHC searches
- ► Higgs precision physics limits

LEP and LHC constraints on Charged Scalar



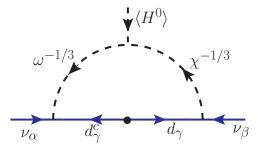
Diagonal NSI in Zee model



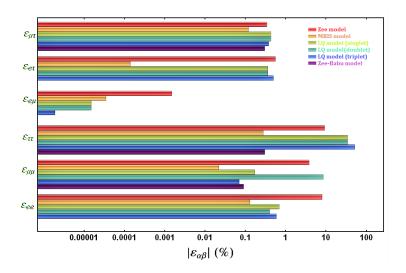
Babu, Dev, Jana, Thapa (2019)

Leptoquark models of radiative neutrino mass

- ► Charged lepton in Zee diagram may be replaced by quarks
- ► Charged scalars will then be replaced by Leptoquark scalars
- ► Several such models exist in literature
- ▶ More interest in context of *B* meson deacy anomalies



Summary of NSI in radiative models

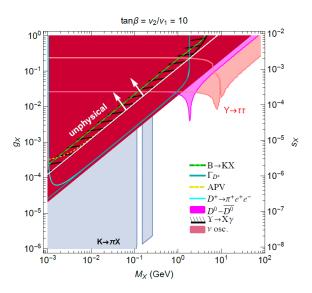


Babu, Dev, Jana, Thapa (2019)

Nutrino Mass Models with Light Mediators

- ▶ If the mediator generating $(\overline{\nu}_{\alpha}\gamma_{\mu}\nu_{\beta})(\overline{f}\gamma^{\mu}f)$ interactions is light, the severe charged lepton flavor violation constraints may be evaded
- ▶ Gauging (B L) for the third family is an explicit example of this Babu, Friedland, Machado, Mocioiu (2017)
- ► The model has ν_R fields, a second Higgs doublet ϕ_2 and a singlet s, both with (B-L) charge of 1/3
- ϕ_2 generates quark mixings; charged leptons remain unmixed \Rightarrow No flavor violation in charged leptons
- ▶ If mass of the new gauge boson X is of order 100 MeV, with the gauge coupling $g_X \sim 10^{-3}$ all constraints are satisfied
- ▶ This explicit model generates $\epsilon_{\tau\tau} \sim 0.5$
- ν_3^c is light and may serve as the sterile neutrino relevant for short baseline anomalies Babu, Friedland, Mocioiu, Machado (to appear)

$(B-L)_3$ Model Constraints



Babu, Friedland, Machado, Mocioiu (2017)

Other Models with large NSI

- ► Several models have been proposed to generate observable NSI
- Main challenge is to control charged lepton flavor violation and universality constraints
- Some models use cancellations among d = 6 and d = 8 operators Gavela, Hernandez, Ota, Winter (2009)
- Light mediators help with satisfing such constraints Farzan, Shoemaker (2016); Farzan (2016); Denton, Farzan, Shoemaker (2018)
- Collider signals of these models have been studied, especailly for monojet signals Friedland, Graesser, Shoemaker (2012); Elahi, Martin (2019); Babu, Goncalves, Jana, Machado (2021)

Conclusions

- ► EFT description alone in neutrino sector is inadequate; we may miss important phenomena such as leptogenesis
- Grand Unification provides powerful tools to interconnect neutrino sector with quark sector
- Neutrino may very well be Dirac particles; interesting models of Dirac neutrino exist
- ▶ Various d = 7 and d = 9 lepton number violating EFT operators can lead to interesting neutrino mass models
- ► These models may be realized near the TeV scale, with potential signals for NSI, cFLV and direct detection at colliders