

Impact of Sommerfeld Effect and Bound State Formation in Simplified *t*-Channel Dark Matter Models

in collaboration with

Emanuele Copello, Julia Harz, Kirtimaan Mohan and Dipan Sengupta

based on 2204.04326

supported by DFG Emmy Noether Grant No. HA 8555/1-1.

Mathias Becker

PPC St. Louis, June 2022

Simplified t-Channel Dark Matter

Universal framework for t-channel DM models [Arina, Fuks, Mantani (2020)]

S3M-uR t-channel Dark Matter

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin,BSM} + g_{DM}\overline{\chi}(u_R)_i(X^{\dagger})_i + h.c.$$

$$\chi = (\mathbf{1}, \mathbf{1})_0 \qquad X_i = (\mathbf{3}, \mathbf{1})_{2/3}$$

Simplified t-Channel Dark Matter

Universal framework for t-channel DM models [Arina, Fuks, Mantani (2020)]

S3M-uR t-channel Dark Matter

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin,BSM}} + g_{\text{DM}}\overline{\chi}(u_R)_i(X^{\dagger})_i + h.c.$$

$$\chi = (\mathbf{1}, \mathbf{1})_0 \qquad X_i = (\mathbf{3}, \mathbf{1})_{2/3}$$

- Discrete \mathcal{Z}_2 : SM fields even, dark sector fields odd
- 3 generation of mediator fields that couple democratically diagonally to the SM quarks
- Parameters: $(m_{\chi} = m_{\text{DM}}, \Delta m = m_X m_{\text{DM}}, g_{\text{DM}})$

Dark Matter Freeze-Out

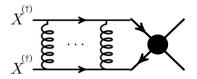
Assumptions during DM freeze-out:

• Dark sector in *kinetic* eq. with the SM.

_

• Dark sector particles in *chemical* eq. with themselves.

Coannihilation


$$\frac{dn}{dt} + 3Hn = -\langle \sigma_{\text{eff}} v \rangle \left(n^2 - (n^{\text{eq}})^2 \right)$$
$$\langle \sigma_{\text{eff}} v \rangle = \sum_{i,j} \langle \sigma_{ij} v_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}}$$

$$n = \sum_{i} n_{i}$$
 and $i, j = \{\chi, X_{1}, X_{2}, X_{3}\}$ and $\Omega_{\text{DM}} \sim \langle \sigma_{\text{eff}} v \rangle^{-1}$

n-gluon exchanges contribute with $\left(\frac{\alpha}{\nu}\right)^n$ for $\alpha \sim \nu$

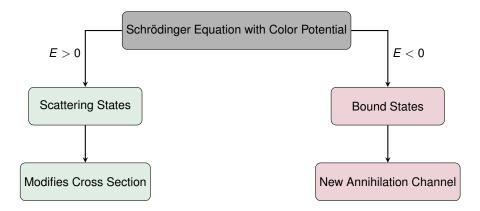
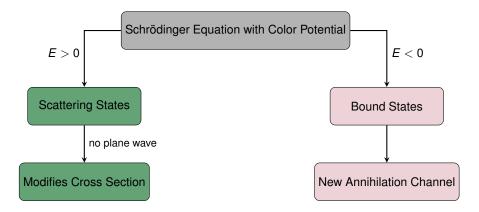
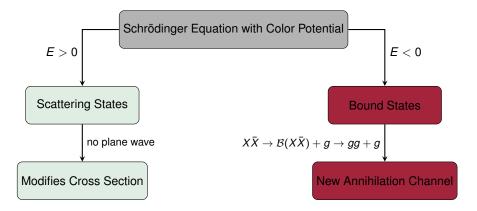

- \rightarrow Resummation required since $\alpha \sim \textit{v}$
- ightarrow Reduces to Schrödinger Equation for $u \ll 1$. For details [Petraki,Postma,Wiechers(2015)]

Figure from Talk by J.Harz @ DM Working Group





SE vs BSF

Modified Coannihilation [Ellis, Luo, Olive (2015)]

$$\langle \sigma_{\text{eff}} \boldsymbol{v} \rangle = \sum_{i,j \in \{\chi, X\}} \langle S\left(\alpha / v_{ij}\right) \cdot \sigma_{ij} \boldsymbol{v}_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}} + \langle \sigma_{\text{BSF}} \boldsymbol{v} \rangle_{\text{eff}} \left(\frac{n_X^{\text{eq}}}{n^{\text{eq}}}\right)^2$$

$\langle \sigma_{\rm eff} \mathbf{v} \rangle$	Sommerfeld Effect	Bound State Formation
$g_{ extsf{DM}} \gg g_s$	_	0
$g_{ extsf{DM}} \ll g_s$	+	+

Determine $g_{DM,0}$ for each data point $(m_{DM}, \Delta m)$ such that DM is *not* overproduced.

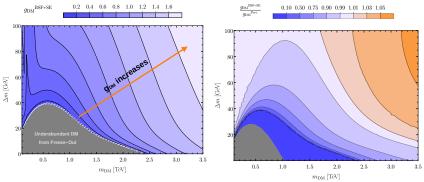
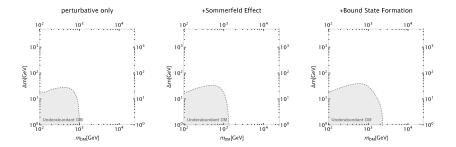
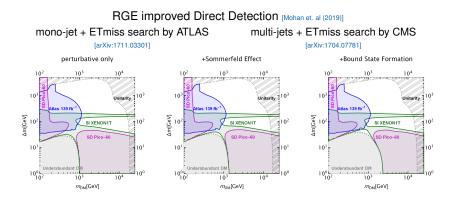
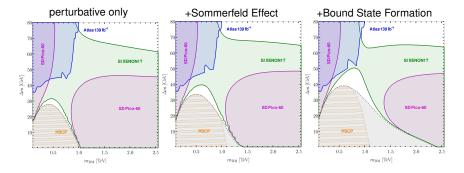



Figure from [MB,Copello,Harz,Mohan,Sengupta(2022)]


 \rightarrow Bound State Formation increases the area where the strong interaction deplete relic density significantly!

Experimental Constraints



Mathias Becker

 $(m_{DM}, \Delta m) < (1 TeV, 30 GeV)$ to (1.4 TeV, 40 GeV) (Sommerfeld Effect) and (2.4 TeV, 50 GeV) (Bound State Formation)

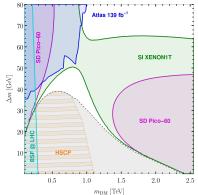
Bound State Formation at the LHC

Production Cross Section

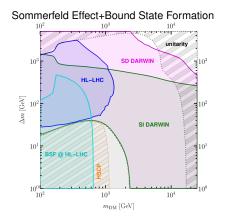
$$\sigma(pp \to \mathcal{B}(XX^{\dagger})) = \frac{\pi^2}{8m_B^3} \Gamma(\mathcal{B}(XX^{\dagger}) \to gg) \mathcal{P}_{gg}\left(\frac{m_B}{13 \text{ TeV}}\right)$$

 \rightarrow try to observe the bound state resonance in $\gamma\gamma$ final state. <code>ATLAS (2017)</code>

Efficient for all g_{DM} small enough such that $\Gamma_X < E_B$, roughly speaking $g_{DM} \leq g_s$.

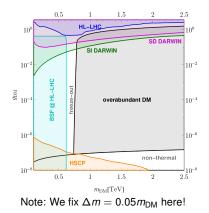


Limits at $37 \, {\rm fb^{-1}}$ relatively weak in mass ($\sim 300 \, {\rm GeV}$) But huge potential: Closes the gap between prompt and LLP searches


Mathias Becker

PPC St. Louis, June 2022

- Highly testable: Parameter space almost completely probed
- Remember: HSCP not a strict exclusion here (BSF@LHC is!)
- · Bound State effects enlarge the area still necessary to test


Mathias Becker

Potential of BSF@LHC

Conclusion

- Non-perturbative Effects can increase or decrease the annihilation cross section of DM
 - \rightarrow Cannot be handled by a flat correction factor!
- Non-perturbative Effects are non-neglible in scenarios of colored coannihilation and open up small mass parameter space:

Viable Parameter space shifts from $(m_{DM}, \Delta m) < (1 TeV, 30 GeV)$ to (1.4 TeV, 40 GeV) (Sommerfeld Effect) and (2.4 TeV, 50 GeV) (Bound State Formation)

- \rightarrow Sommerfeld Effect alone not a good approximation!
- Bound State searches at colliders close the gap in "coupling space" between prompt and long-lived-particle searches

Sommerfeld Effect

Sommerfeld Effect on the Annihilation Cross Section

$$\left\langle \sigma_{\text{eff}} \mathbf{V} \right\rangle = \sum_{i,j \in \{\chi, X\}} \left\langle S\left(\alpha / V_{ij}\right) \cdot \sigma_{ij} \mathbf{V}_{ij} \right\rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}}$$

Sommerfeld Factor

$$S(\alpha/v_{ij}) = \begin{cases} \geq 1 & \text{, if } \alpha_{\text{eff}} > 0(\text{attractive}), \\ \leq 1 & \text{, if } \alpha_{\text{eff}} < 0(\text{repulsive}) \end{cases}$$

- Has an effect independently of the hierarchy between $g_{\rm DM}$ and g_s
- Tends to lower $\langle \sigma_{
 m eff} {\it v}
 angle$ for $g_{
 m DM} > g_s$
- Tends to increase $\langle \sigma_{
 m eff} {\it v}
 angle$ for $g_{
 m DM} < g_{
 m s}$

Mathias Becker

Bound State Formation (BSF)

Modified Coannihilation [Ellis,Luo,Olive(2015)]

$$\langle \sigma_{\text{eff}} \mathbf{v} \rangle = \sum_{i,j \in \{\chi, X\}} \langle S\left(\alpha / v_{ij}\right) \cdot \sigma_{ij} \mathbf{v}_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}} + \langle \sigma_{\text{BSF}} \mathbf{v} \rangle_{\text{eff}} \left(\frac{n_X^{\text{eq}}}{n^{\text{eq}}}\right)^2$$

Bound states effectively provide an additional annihilation channel.

Bound State Formation (BSF)

Modified Coannihilation [Ellis, Luo, Olive (2015)]

$$\langle \sigma_{\text{eff}} \mathbf{v} \rangle = \sum_{i,j \in \{\chi, X\}} \langle S\left(\alpha / v_{ij}\right) \cdot \sigma_{ij} \mathbf{v}_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}} + \langle \sigma_{\text{BSF}} \mathbf{v} \rangle_{\text{eff}} \left(\frac{n_X^{\text{eq}}}{n^{\text{eq}}}\right)^2$$

Bound states effectively provide an additional annihilation channel.

- \rightarrow BSF always increases annihilation cross section
- ightarrow Purely mediated by g_s , thus less important for $g_{ extsf{DM}} \gg g_s$