HIDDEN SECTOR NEUTRINOS \& FREEZE-IN LEPTOGENESIS

based on I. Flood, R. Porto, J. Schlesinger, BS, M. Thum, 2109.10908, PRD 105 (2022)

Brian Shuve

 PPC 2022
STERILE NEUTRINOS

- Sterile neutrinos (N) can give rise to SM neutrino masses via seesaw mechanism
- Also good for leptogenesis when sterile neutrinos out of equilibrium!

STERILE NEUTRINOS

- Sterile neutrinos (N) can give rise to SM neutrino masses via seesaw mechanism
- Also good for leptogenesis when sterile neutrinos out of equilibrium!

LEPTOGENESIS

- Lepton asymmetry shared with baryons via sphalerons
- Mechanism of baryogenesis depends on relative timing of sphaleron decoupling

LEPTOGENESIS

- Lepton asymmetry shared with baryons via sphalerons
- Mechanism of baryogenesis depends on relative timing of sphaleron decoupling

HIDDEN SECTORS

- Many models with sterile neutrinos contain other new particles, motivated by GUTs, dark matter, etc.
- Asymmetry from freeze-in depends crucially on hidden sector structure, since this dictates production \& decay rates/modes

HIDDEN SECTORS

- Many models with sterile neutrinos contain other new particles, motivated by GUTs, dark matter, etc.
- Asymmetry from freeze-in depends crucially on hidden sector structure, since this dictates production \& decay rates/modes

FREEZE-IN LEPTOGENESIS MECHANISM

- SM Higgs decays produce GeV-scale N + SM lepton
- Sterile neutrinos coherently propagate
- Inverse decay destroys SM lepton and sterile neutrino

ASYMMETRY \& HNL MASSES

- Asymmetry generation rate is proportional to

$$
\sin \left[\int\left(E_{2}-E_{1}\right) d t\right] \approx \sin \left[\int \frac{M_{2}^{2}-M_{1}^{2}}{2 p} d t\right]
$$

- Asymmetry generation stops when N come into equilibrium

HIDDEN SECTOR MODEL

- Consider generic singlet scalar coupled to pairs of sterile neutrinos
- Results don't depend on details of model

ASYMMETRY SUPPRESSION

- To begin, assume $\lambda \gg y$ (ϕ always in equilibrium)
- Asymmetry suppressed by $y^{-10!!}$

$$
\begin{aligned}
M_{\phi} & =1 \mathrm{GeV} \\
M_{1} & =1 \mathrm{GeV} \\
\Delta M & =3 \times 10^{-8} \mathrm{GeV} \\
\lambda & =0.1
\end{aligned}
$$

ASYMMETRY SUPPRESSION

- Optimal mass splitting corresponds to onset of oscillations around sterile neutrino equilibration time

HIDDEN-SECTOR DYNAMICS

- Now, consider $y \gg \lambda$
- Interactions within the hidden sector change the number density and kinetic energy of hidden states $\left(T \neq T_{\text {SM }}\right)$

HIDDEN-SECTOR ASYMMETRY

- Optimize the asymmetry by picking the best mass splitting \& overall scale of sterile neutrino Yukawa couplings

$y \sqrt{\lambda} \lesssim 2 \times 10^{-5}$

PHENOMENOLOGY

- Can connect with phenomenology, giving prospects for discovery or falsification of leptogenesis!

$$
h \rightarrow N N
$$

In both: $\quad M_{\phi}=15 \mathrm{GeV}$

$$
M_{N}=5 \mathrm{GeV}
$$

PHENOMENOLOGY

- Can connect with phenomenology, giving prospects for discovery or falsification of leptogenesis!

$$
h \rightarrow N N
$$

In both: $\quad M_{\phi}=15 \mathrm{GeV}$

$$
M_{N}=5 \mathrm{GeV}
$$

$h \rightarrow \phi \phi, \phi \rightarrow N N$

SUMMARY

- Hidden-sector couplings to HNLs can severely suppress the asymmetry from leptogenesis
- Asymmetry suppression well modelled by simple analytic estimates
- We clarify the signals in conflict with \& compatible with leptogenesis in a singlet scalar model
- Results easily generalized to other models of interest

BACKUP SLIDES

THE MINIMAL PARADIGM

- Adding three sterile neutrinos/heavy neutral leptons (HNLs) can solve all three problems
- Heaviest two HNLs generate lepton asymmetry through freeze-in (ARS) leptogenesis, lightest HNL is a freeze-in DM candidate
- Neutrino minimal SM (or vMSM)

$$
\begin{aligned}
F & \sim 10^{-7} \\
M_{N} & \sim \mathrm{GeV} \\
\Delta M_{N} & \ll M_{N}
\end{aligned}
$$

THE MINIMAL PARADIGM

- Often, although not always, mass degeneracies and/or enhancements in Yukawa couplings relative to naive see-saw
- Could be hallmark of approximate lepton number symmetry

Shaposhnikov, hep-ph/0605047

STERILE NEUTRINO RESULTS

- Scalar must be very heavy to avoid spoiling leptogenesis

STERILE: OPTIMAL ASYMMETRY

- Optimize the asymmetry by picking the optimal mass splitting \& overall scale of sterile neutrino Yukawa couplings
- Agrees with analytic prediction

$$
y \sqrt{\lambda} \lesssim 10^{-5}
$$

HIDDEN-SECTOR DYNAMICS

- We start by simply characterizing the abundance \& temperature of hidden-sector particles without determining asymmetry

HIDDEN-SECTOR ASYMMETRY

- There is now a scenario where the hidden sector is internally in equilibrium but out of equilibrium with the SM
- Suppression of asymmetry when this happens!

HIDDEN-SECTOR ASYMMETRY

- To determine the lepton asymmetry, we model the HNL density matrix with two components:

$$
\rho_{N}^{\mathrm{tot}}=\rho_{N}^{\mathrm{ARS}}(T)+\rho_{\tilde{N}}\left(T_{N}\right)
$$

- We substitute this density matrix into the usual ARS equations, modify the collision terms to account for the fact that $\rho_{\tilde{N}}$ has a typical momentum associated with T_{N}
- We remove terms that are strictly internal to the hidden sector (i.e. that changes $\rho_{\tilde{N}}$ but not ρ_{N}^{ARS}

HIDDEN-SECTOR ASYMMETRY

- To determine the lepton asymmetry, we model the HNL density matrix with two components:

$$
\rho_{N}^{\mathrm{tot}}=\rho_{N}^{\mathrm{ARS}}(T)+\rho_{\tilde{N}}\left(T_{N}\right) n_{N}^{\mathrm{h.s} \cdot \mathbb{I}}
$$

- We substitute this density matrix into the usual ARS equations, modify the collision terms to account for the fact that $\rho_{\tilde{N}}$ has a typical momentum associated with T_{N}
- We remove terms that are strictly internal to the hidden sector (i.e. that changes $\rho_{\tilde{N}}$ but not ρ_{N}^{ARS}

HIGGS DECAYS TO SCALARS

$$
h \rightarrow \phi \phi, \phi \rightarrow N N
$$

dark Higgs:

In both: $\quad M_{\phi}=15 \mathrm{GeV}$

$$
M_{N}=5 \mathrm{GeV}
$$

generic:

(set y to max allowed by leptogenesis)

B DECAYS TO SCALAR

$$
B \rightarrow K \phi, \phi \rightarrow N N
$$

dark Higgs:

In both: $\quad M_{\phi}=2 \mathrm{GeV}$

$$
M_{N}=0.5 \mathrm{GeV}
$$

generic:

(set y to max allowed by leptogenesis)

ARS QUANTUM KINETIC EQUATIONS

$$
\begin{aligned}
\frac{d R_{N}}{d z} & =i\left[R_{N}, W_{N}\right]+3 i z^{2}\left[R_{N}, r\right]-\mathcal{C}^{(0)}\left\{R_{N}, W_{N}\right\}+2 \mathcal{C}^{(0)} W_{N}+\mathcal{C}^{(\mathrm{w} .0 .1)} o_{\mu}+\frac{1}{2} \mathcal{C}^{(\mathrm{w} .0 .2)}\left\{o_{\mu}, R_{N}\right\} \\
\frac{32 T_{\mathrm{ew}}}{M_{0}} \frac{d \mu_{\Delta \alpha}}{d z} & =-\mathcal{C}^{(0)}\left(F R_{N} F^{\dagger}-F^{*} R_{\bar{N}} F^{\mathrm{T}}\right)_{\alpha \alpha}+\mathcal{C}^{(\mathrm{w} .0 .1)}\left(F F^{\dagger}\right)_{\alpha \alpha} \mu_{\alpha}+\frac{\mathcal{C}^{(\mathrm{w} .0 .2)}}{2}\left(F R_{N} F^{\dagger}+F^{*} R_{\bar{N}} F^{\mathrm{T}}\right)_{\alpha \alpha} \mu_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
W_{N} & =\frac{\pi^{2} M_{0}}{144 \zeta(3) T_{\mathrm{ew}}} F^{\dagger} F \\
o_{\mu} & =\frac{\pi^{2} M_{0}}{144 \zeta(3) T_{\mathrm{ew}}} F^{\dagger} \mu F \\
r & =\operatorname{diag}\left(0, \frac{\pi^{2} M_{0} \Delta M_{21}^{2}}{108 \zeta(3) T_{\mathrm{ew}}^{3}}\right)
\end{aligned}
$$

FREEZE-OUT LEPTOGENESIS

$$
Y_{N}-Y_{N}^{\mathrm{eq}} \approx \frac{45 H Y_{N}^{\mathrm{eq}} z^{2}}{16 \pi^{4} g_{* S}\left\langle\Gamma_{\phi \rightarrow N N}\right\rangle Y_{\phi}^{\mathrm{eq}}}\left(\frac{M_{N}}{T_{\mathrm{ew}}}\right)^{2}
$$

HIDDEN SECTOR BOLTZMANN EQUATIONS

$$
\begin{aligned}
\dot{n}_{\phi}+3 H n_{\phi}= & -2\left[\left\langle\sigma\left(\phi \phi \rightarrow H H^{*}\right) v\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow H H^{*}\right) v\right\rangle_{T} n_{\phi}^{\mathrm{eq}}(T)^{2}\right] \\
& -2 \sum_{I}\left[\left\langle\Gamma_{\phi \rightarrow N_{I} N_{I}}\right\rangle_{T_{\phi}} n_{\phi}(t)-\left\langle\Gamma_{\phi \rightarrow N_{I} N_{I}}\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{ed}}\left(T_{N}\right)}\right)^{2}\right] \\
& -2 \sum_{I}\left[\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)^{2}\left(\frac{n_{N_{I}}(t)}{n_{N_{I}}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right], \\
\dot{n}_{N_{I}}+3 H n_{N_{I}}= & 2\left[\left\langle\Gamma_{\phi \rightarrow N_{I} N_{I}}\right\rangle_{T_{\phi}} n_{\phi}(t)-\left\langle\Gamma_{\phi \rightarrow N_{I} N_{I}}\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right] \\
& +\left[\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)^{2}\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right],
\end{aligned}
$$

HIDDEN SECTOR BOLTZMANN EQUATIONS

$$
\begin{aligned}
\dot{\rho}_{\phi}+4 H \rho_{\phi}= & -\left[\left\langle\sigma\left(\phi \phi \rightarrow H H^{*}\right) v E_{\phi}\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow H H^{*}\right) v E_{\phi}\right\rangle_{T} n_{\phi}^{\mathrm{eq}}(T)^{2}\right] \\
& -n_{H}^{\mathrm{eq}}(T) n_{\phi}(t)\left\langle\sigma(\phi H \rightarrow \phi H) v E_{\phi}\right\rangle_{T_{\phi}}\left(\frac{T_{\phi}}{T}-1\right) \\
& -2 \bar{M}_{\phi} \sum_{I} \Gamma_{\phi \rightarrow N_{I} N_{I}}\left[n_{\phi}(t)-n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right] \\
& -\sum_{I}\left[\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v E_{\phi}\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v E_{\phi}\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)^{2}\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right] \\
& -\frac{2}{3} n_{\phi}(t) \sum_{I} n_{N_{I}}(t)\left\langle\sigma\left(\phi N_{I} \rightarrow \phi N_{I}\right) v E_{\phi}\right\rangle_{T_{\phi}}\left(\frac{T_{\phi}}{T_{N}}-1\right), \\
\dot{\rho}_{N_{I}}+4 H \rho_{N_{I}}= & \bar{M}_{\phi} \Gamma_{\phi \rightarrow N_{I} N_{I}}\left[n_{\phi}(t)-n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)\left(\frac{n_{N_{I}}(t)}{n_{N}^{\text {eq }}\left(T_{N}\right)}\right)^{2}\right] \\
& +\frac{1}{2}\left[\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v E_{\phi}\right\rangle_{T_{\phi}} n_{\phi}(t)^{2}-\left\langle\sigma\left(\phi \phi \rightarrow \bar{N}_{I} N_{I}\right) v E_{\phi}\right\rangle_{T_{N}} n_{\phi}^{\mathrm{eq}}\left(T_{N}\right)^{2}\left(\frac{n_{N_{I}}(t)}{n_{N}^{\mathrm{eq}}\left(T_{N}\right)}\right)^{2}\right] \\
& +\frac{1}{3} n_{\phi}(t) \sum_{I} n_{N_{I}}(t)\left\langle\sigma\left(\phi N_{I} \rightarrow \phi N_{I}\right) v E_{\phi}\right\rangle_{T_{\phi}}\left(\frac{T_{\phi}}{T_{N}}-1\right),
\end{aligned}
$$

HIDDEN SECTOR OKES

$$
\begin{aligned}
& \bar{T} \equiv \sqrt{T T_{N}} \\
& \frac{d R_{N}}{d z}= i\left[R_{N}, W_{N}\right]+3 i z^{2}\left[R_{N}, r\right]-\mathcal{C}^{(0)}\left\{R_{N}+\frac{Y_{\tilde{N}}}{u Y_{N}^{\mathrm{eq}}(T)} \mathbb{I}, W_{N}\right\}+2 \mathcal{C}^{(0)} W_{N}+\mathcal{C}^{(\mathrm{w} .0 .1)} o_{\mu} \\
&+\frac{1}{2} \mathcal{C}^{(\mathrm{w} .0 .2)}\left\{o_{\mu}, R_{N}+\frac{Y_{\tilde{\mathrm{N}}}}{u Y_{N}^{e \mathrm{e}}(T)} \mathbb{I}\right\}-\frac{2}{z H}\left\langle\Gamma_{\phi \rightarrow N_{I} N_{I}}\right\rangle_{\bar{T}} \frac{Y_{\phi}^{\mathrm{eq}}(\bar{T})}{Y_{N}^{\mathrm{eq}}(\bar{T})^{2}} Y_{\tilde{N}} R_{N} \\
&-\frac{s}{z H}\left\langle\sigma\left(\phi \phi \rightarrow N_{I} \bar{N}_{I}\right) v\right\rangle_{\bar{T}} \frac{Y_{\phi}^{\mathrm{eq}}(\bar{T})^{2}}{Y_{N}^{\text {eq }}(\bar{T})^{2}} Y_{\tilde{N}} R_{N}, \\
& \frac{32 T_{\text {ew }}}{M_{0}} \frac{d \mu_{\Delta \alpha}}{d z}=-\mathcal{C}^{(0)}\left(F R_{N} F^{\dagger}-F^{*} R_{\bar{N}} F^{\mathrm{T}}\right)_{\alpha \alpha}+\mathcal{C}^{(\mathrm{w} .0 .1)}\left(F F^{\dagger}\right)_{\alpha \alpha} \mu_{\alpha} \\
&+\frac{\mathcal{C}^{(\mathrm{w} .0 .2)}}{2}\left(F R_{N} F^{\dagger}+F^{*} R_{\bar{N}} F^{\mathrm{T}}+\frac{2 Y_{\tilde{N}}}{u Y_{N}^{\mathrm{eq}}(T)} F F^{\dagger}\right)_{\alpha \alpha} \mu_{\alpha} .
\end{aligned}
$$

THERMAL MASS OSCILLATIONS

- If HNL masses originate from spontaneous symmetry breaking, then they could be 0 at tree level in the early universe
- Dominant contribution now comes from thermal contribution to HNL energy differences due to hidden-sector couplings

$$
\begin{aligned}
\mathcal{A}\left(z_{\mathrm{eq}}\right) & =\int_{0}^{z_{\mathrm{eq}}} d z_{2} \int_{0}^{z_{2}} d z_{1} \sin \left[\frac{z_{2}-z_{1}}{z_{\mathrm{osc}}}\right] \\
& \approx \frac{\Delta y^{2} T_{\mathrm{ew}}^{2}}{288 a_{N}^{3} y^{6} M_{0}^{2}} \\
& \mathcal{A}\left(z_{\mathrm{eq}}\right)^{(\text {optimized })}=\frac{T_{\mathrm{ew}}^{2}}{6 a_{N}^{2} M_{0}^{2} y^{4}}
\end{aligned}
$$

MOMENTUM AVERAGING

- Our QKEs average over momentum; however, in practice each momentum as its own oscillation time
- While we don't solve the full momentum-dependent QKEs in general, we can solve them perturbatively

$$
z_{\mathrm{osc}}(q)=\left(\frac{6 q T_{\mathrm{ew}}^{3}}{\Delta M_{21}^{2} M_{0}}\right)^{1 / 3}
$$

