High-quality axions in solutions to the μ problem

Prudhvi N. Bhattiprolu prudhvib@umich.edu

M University of Michigan

June 8 PPC 2022 Washington University

Based on work with Stephen P. Martin, arXiv:hep-ph/2106.14964

The Kim-Nilles mechanism

Consider MSSM (without μ -term) + two gauge-singlets X and Y:

$$W_1 \supset \frac{\lambda_{\mu}}{M_P} XY H_u H_d + \frac{\lambda}{6M_P} X^3 Y,$$

respecting $U(1)_{PQ}$.

The Kim-Nilles mechanism

Consider MSSM (without μ -term) + two gauge-singlets X and Y:

$$W_1 \supset \frac{\lambda_{\mu}}{M_P} XY H_u H_d + \frac{\lambda}{6M_P} X^3 Y,$$

respecting $U(1)_{PQ}$.

The total scalar potential (with the soft terms) has a local minimum for

$$\langle X \rangle \ \sim \ \langle Y \rangle \ \sim \ \sqrt{m_{\rm soft} M_P} \ \equiv \ M_{\rm int},$$

with $m_{\rm soft} \sim {\rm TeV}$ scale, and $M_{\rm int}$ in the range

$$10^9~\text{GeV}\,\lesssim\,\textit{M}_{int}\,\lesssim\,10^{12}~\text{GeV}.$$

The Kim-Nilles mechanism

Consider MSSM (without μ -term) + two gauge-singlets X and Y:

$$W_1 \supset \frac{\lambda_{\mu}}{M_P} XY H_u H_d + \frac{\lambda}{6M_P} X^3 Y,$$

respecting $U(1)_{PQ}$.

The total scalar potential (with the soft terms) has a local minimum for

$$\langle X \rangle \, \sim \, \langle Y \rangle \, \sim \, \sqrt{m_{\rm soft} M_P} \, \equiv \, M_{\rm int},$$

with $m_{\rm soft} \sim {\rm TeV}$ scale, and $M_{\rm int}$ in the range

$$10^9~{
m GeV}\,\lesssim\,M_{
m int}\,\lesssim\,10^{12}~{
m GeV}.$$

The low-energy theory now contains:

- $\mu = \frac{\lambda_{\mu}}{M_{P}} \langle XY \rangle \sim m_{\text{soft}}$
- ► An invisible DFSZ-type QCD axion

solving the μ problem and the strong CP problem!

The four base models[†]

Base model	Superpotential terms	PQ charges of (X, Y)
B _I	$XYH_uH_d + X^3Y$	(-1, 3)
B _{II}	$X^2H_uH_d+X^3Y$	(1, -3)
B _{III}	$Y^2H_uH_d+X^3Y$	$\left(-rac{1}{3},1 ight)$
B _{IV}	$X^2H_uH_d+X^2Y^2$	(1, -1)

 $^{^{\}dagger}B_{\rm I}$ proposed in H. Murayama, H. Suzuki, T. Yanagida Phys. Lett. B **291**, 418-425 (1992); $B_{\rm II}$ in K. Choi, E. J. Chun, J. E. Kim hep-ph/9608222; $B_{\rm III}$, $B_{\rm IV}$ in S. P. Martin hep-ph/0005116;

The four base models[†]

Base model	Superpotential terms	PQ charges of (X, Y)
B _I	$XYH_uH_d + X^3Y$	(-1, 3)
B _{II}	$X^2H_uH_d+X^3Y$	(1, -3)
B _{III}	$Y^2H_uH_d+X^3Y$	$\left(-rac{1}{3},1 ight)$
B _{IV}	$X^2H_uH_d+X^2Y^2$	(1, -1)

In terms of the PQ charges of the MSSM quark and lepton doublets Q_q , Q_ℓ

	H_u	H_d	ū	d	ē
PQ charge	$-2c_{\beta}^{2}$	$-2s_{\beta}^{2}$	$2c_{\beta}^2-Q_q$	$2s_{\beta}^2-Q_q$	$2s_{\beta}^2-Q_{\ell}$

where $\tan \beta = s_{\beta}/c_{\beta}$ is the ratio of the Higgs VEVs.

 $^{^{\}dagger}B_{\rm I}$ proposed in H. Murayama, H. Suzuki, T. Yanagida Phys. Lett. B **291**, 418-425 (1992); $B_{\rm II}$ in K. Choi, E. J. Chun, J. E. Kim hep-ph/9608222; $B_{\rm III}$, $B_{\rm IV}$ in S. P. Martin hep-ph/0005116;

The four base models[†]

Base model	Superpotential terms	PQ charges of (X, Y)
B _I	$XYH_uH_d + X^3Y$	(-1, 3)
B _{II}	$X^2H_uH_d+X^3Y$	(1, -3)
B _{III}	$Y^2H_uH_d+X^3Y$	$\left(-rac{1}{3},1 ight)$
B _{IV}	$X^2H_uH_d+X^2Y^2$	(1, -1)

In terms of the PQ charges of the MSSM quark and lepton doublets \mathcal{Q}_q , \mathcal{Q}_ℓ

	H_u	H_d	ū	d	ē
PQ charge	$-2c_{\beta}^{2}$	$-2s_{\beta}^{2}$	$2c_{\beta}^2-Q_q$	$2s_{\beta}^2-Q_q$	$2s_{\beta}^2-Q_{\ell}$

where $\tan \beta = s_{\beta}/c_{\beta}$ is the ratio of the Higgs VEVs.

 $g_{A\gamma}$ suppressed in all four base models!

 $^{^{\}dagger}B_{\rm I}$ proposed in H. Murayama, H. Suzuki, T. Yanagida Phys. Lett. B **291**, 418-425 (1992); $B_{\rm II}$ in K. Choi, E. J. Chun, J. E. Kim hep-ph/9608222; $B_{\rm III}$, $B_{\rm IV}$ in S. P. Martin hep-ph/0005116;

Cosmological domain wall problem

$$U(1)_{PQ} \xrightarrow{PQ \text{ breaking}} Z_{N_{DW}} \text{ discrete symmetry}$$

Domain wall number ($N_{\rm DW}$): number of discrete set of inequivalent degenerate minima of the axion potential.

[†]See e.g. P. Sikivie Phys. Rev. Lett. 48, 1156-1159 (1982)

Cosmological domain wall problem

$$U(1)_{PQ} \xrightarrow{PQ \text{ breaking}} Z_{N_{DW}} \text{ discrete symmetry}$$

Domain wall number ($N_{\rm DW}$): number of discrete set of inequivalent degenerate minima of the axion potential.

Problem

Formation of topological defects such as stable DWs, due to the different possible phases of the axion, which dominate the universe[†]

[†]See e.g. P. Sikivie Phys. Rev. Lett. **48**, 1156-1159 (1982)

Cosmological domain wall problem

$$U(1)_{PQ} \xrightarrow{PQ \text{ breaking}} Z_{N_{DW}} \text{ discrete symmetry}$$

Domain wall number ($N_{\rm DW}$): number of discrete set of inequivalent degenerate minima of the axion potential.

Problem

Formation of topological defects such as stable DWs, due to the different possible phases of the axion, which dominate the universe[†]

Some solutions

- ► If PQ breaking happens before inflation
- $ightharpoonup N_{\mathsf{DW}} = 1 ext{ (our focus)}$

 $N_{DW} \neq 1$ in all four base models.

[†]See e.g. P. Sikivie Phys. Rev. Lett. **48**, 1156-1159 (1982)

Base model extensions

Consistent with gauge coupling unification, we consider the following extensions:

- ▶ $\mathbf{5} + \overline{\mathbf{5}}$ at TeV or M_{int}
- ightharpoonup 10 + $\overline{10}$ at TeV
- ▶ $10 + \overline{10}$ at M_{int}
- ▶ 10 + 10 at M_{int} ▶ $(5 + \overline{5})$ or $(10 + \overline{10})$ at TeV, $(5 + \overline{5})$ or $(10 + \overline{10})$ at M_{int} $N_{\text{DW}} = 1$ possible

Base model extensions

Consistent with gauge coupling unification, we consider the following extensions:

- ▶ $\mathbf{5} + \overline{\mathbf{5}}$ at TeV or M_{int}
- ightharpoonup 10 + $\overline{10}$ at TeV
- ▶ $10 + \overline{10}$ at M_{int}
- $\begin{array}{c|c} \hline \bullet & 10 \pm 10 \text{ at } \textit{IV}_{\text{int}} \\ \hline \bullet & (\mathbf{5}+\overline{\mathbf{5}}) \text{ or } (\mathbf{10}+\overline{\mathbf{10}}) \text{ at TeV, } (\mathbf{5}+\overline{\mathbf{5}}) \text{ or } (\mathbf{10}+\overline{\mathbf{10}}) \text{ at } \textit{M}_{\text{int}} \\ \end{array} \right\} \textit{N}_{\text{DW}} = 1 \text{ possible}$

Here.

$$\overline{5} = \underbrace{(\overline{3}, \mathbf{1}, 1/3)}_{\overline{D}} + \underbrace{(\mathbf{1}, \mathbf{2}, -1/2)}_{L}$$

$$\mathbf{10} = \underbrace{(\mathbf{3}, \mathbf{2}, 1/6)}_{Q} + \underbrace{(\overline{3}, \mathbf{1}, -2/3)}_{\overline{U}} + \underbrace{(\mathbf{1}, \mathbf{1}, 1)}_{\overline{E}}$$

We allow for different components of the $\mathbf{5} + \overline{\mathbf{5}}$ and/or $\mathbf{10} + \overline{\mathbf{10}}$ to have different mass source terms.

Base model extensions

Consistent with gauge coupling unification, we consider the following extensions:

- ▶ $\mathbf{5} + \overline{\mathbf{5}}$ at TeV or M_{int}
- ightharpoonup 10 + $\overline{10}$ at TeV
- ▶ $10 + \overline{10}$ at M_{int}
- $\begin{array}{c|c} \bullet & 10 \text{ at } N_{\text{int}} \\ \hline \bullet & (\mathbf{5}+\overline{\mathbf{5}}) \text{ or } (\mathbf{10}+\overline{\mathbf{10}}) \text{ at TeV, } (\mathbf{5}+\overline{\mathbf{5}}) \text{ or } (\mathbf{10}+\overline{\mathbf{10}}) \text{ at } M_{\text{int}} \\ \end{array} \right\} \ \textit{N}_{\text{DW}} = 1 \text{ possible}$

Here.

$$\overline{5} = \underbrace{(\overline{3}, \mathbf{1}, 1/3)}_{\overline{D}} + \underbrace{(\mathbf{1}, \mathbf{2}, -1/2)}_{L}$$

$$\mathbf{10} = \underbrace{(\mathbf{3}, \mathbf{2}, 1/6)}_{Q} + \underbrace{(\overline{3}, \mathbf{1}, -2/3)}_{\overline{U}} + \underbrace{(\mathbf{1}, \mathbf{1}, 1)}_{\overline{E}}$$

We allow for different components of the $\mathbf{5} + \overline{\mathbf{5}}$ and/or $\mathbf{10} + \overline{\mathbf{10}}$ to have different mass source terms.

Extensions with $N_{\rm DW}=1$ give rise to enhanced low-energy axion couplings!

Assuming the same mechanism that gives a μ term also gives masses to vectorlike pairs of chiral superfields $\Phi + \overline{\Phi}$.

Assuming the same mechanism that gives a μ term also gives masses to vectorlike pairs of chiral superfields $\Phi + \overline{\Phi}$.

TeV scale masses:

$$W_{\text{mass}} = \begin{cases} \frac{\lambda_{\Phi}}{M_P} XY \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_P} X^2 \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_P} Y^2 \Phi \overline{\Phi}, \end{cases}$$

Assuming the same mechanism that gives a μ term also gives masses to vectorlike pairs of chiral superfields $\Phi + \overline{\Phi}$.

TeV scale masses:

$$W_{\text{mass}} = \begin{cases} \frac{\lambda_{\Phi}}{M_{P}} X Y \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_{P}} X^{2} \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_{P}} Y^{2} \Phi \overline{\Phi}, \end{cases}$$

Intermediate scale masses:

$$W_{\mathrm{mass}} = \begin{cases} \lambda_{\Phi} X \Phi \overline{\Phi}, \\ \lambda_{\Phi} Y \Phi \overline{\Phi}. \end{cases}$$

Assuming the same mechanism that gives a μ term also gives masses to vectorlike pairs of chiral superfields $\Phi + \overline{\Phi}$.

TeV scale masses:

$$W_{\text{mass}} = \begin{cases} \frac{\lambda_{\Phi}}{M_{P}} X Y \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_{P}} X^{2} \Phi \overline{\Phi}, \\ \frac{\lambda_{\Phi}}{2M_{P}} Y^{2} \Phi \overline{\Phi}, \end{cases}$$

Intermediate scale masses:

$$W_{\text{mass}} = \begin{cases} \lambda_{\Phi} X \Phi \overline{\Phi}, \\ \lambda_{\Phi} Y \Phi \overline{\Phi}. \end{cases}$$

Mass terms fix the PQ charge of the terms $\Phi \overline{\Phi}$ which in turn fix the low-energy axion couplings, independent of the Yukawa terms.

The axion quality problem

Problem

Higher dimensional operators from quantum gravity can explicitly violate global $U(1)_{\rm PQ}$ and reintroduce the strong CP problem

The axion quality problem

Problem

Higher dimensional operators from quantum gravity can explicitly violate global $U(1)_{\rm PQ}$ and reintroduce the strong CP problem

In our case, consider

$$W = \frac{\kappa}{M_P^{p-3}} X^j Y^{p-j}$$

that contributes to the axion potential (with soft terms), giving rise to:

$$|\theta_{\text{eff}}| = \frac{\delta}{(0.0754 \text{ GeV})^4} \frac{f_A^{p+2}}{M_P^{p-2}},$$

with a dimensionless quantity δ , and f_A identified with M_{int} .

The axion quality problem

Problem

Higher dimensional operators from quantum gravity can explicitly violate global $U(1)_{\rm PQ}$ and reintroduce the strong CP problem

In our case, consider

$$W = \frac{\kappa}{M_P^{p-3}} X^j Y^{p-j}$$

that contributes to the axion potential (with soft terms), giving rise to:

$$|\theta_{\text{eff}}| = \frac{\delta}{(0.0754 \text{ GeV})^4} \frac{f_A^{p+2}}{M_P^{p-2}},$$

with a dimensionless quantity δ , and f_A identified with $M_{\rm int}$.

Solution

We find that $X^j Y^{p-j}$ with p < 7 should be forbidden for $|\theta_{\rm eff}| \lesssim 10^{-10}$

Non-R and R discrete Z_n symmetries

	gauginos	W	chiral superfield Φ	fermion in Φ
Z_n^R charge (mod n)	r	2r	Z_{Φ}	$z_{\Phi}-r$

For non-R symmetry r = 0, and for R-symmetry 0 < r < n/2.

In both cases, $z_{\Phi} = 0, 1, \dots, n-1$.

Non-R and R discrete Z_n symmetries

	gauginos	W	chiral superfield Φ	fermion in Φ
Z_n^R charge (mod n)	r	2r	$Z_{f \Phi}$	$z_{\Phi}-r$

For non-R symmetry r = 0, and for R-symmetry 0 < r < n/2.

In both cases, $z_{\Phi} = 0, 1, \dots, n-1$.

With a normalization where $Z_n^R \times G_{SM} \times G_{SM}$ anomalies are integers, we impose the following anomaly-free conditions:[†]

$$A_2 = A_3 = \rho_{\mathsf{GS}} \; (\mathsf{mod} \; n),$$

for the weaker condition

[†]See e.g. L. E. Ibanez arXiv:hep-ph/9210211

Non-R and R discrete Z_n symmetries

	gauginos	W	chiral superfield Φ	fermion in Φ
Z_n^R charge (mod n)	r	2 <i>r</i>	Z_{Φ}	$z_{\Phi}-r$

For non-R symmetry r = 0, and for R-symmetry 0 < r < n/2.

In both cases, $z_{\Phi} = 0, 1, \dots, n-1$.

With a normalization where $Z_n^R \times G_{SM} \times G_{SM}$ anomalies are integers, we impose the following anomaly-free conditions:[†]

$$A_2 = A_3 = \rho_{\mathsf{GS}} \; (\mathsf{mod} \; n),$$

for the weaker condition, with the additional stronger condition

$$A_1 = 5A_3 = 5\rho_{GS} \pmod{n},$$

which does not require the Green-Schwarz (GS) mechanism if $\rho_{GS} = 0$.

[†]See e.g. L. E. Ibanez arXiv:hep-ph/9210211

Examples with non-R Z_n symmetries: Base models

Stronger constraints with $\rho_{GS} \neq 0$: (Here, m = 0, 1, 2)

Model	Z_n	X	$X \mid H_u \mid$		$ ho_{GS}$
B _{III}	36	1	8 + 12 <i>m</i>	12	18
B _{IV}	36	3	4	8	18

[†]proposed and studied in K. S. Babu, I. Gogoladze, K. Wang hep-ph/0212245.

Examples with non-R Z_n symmetries: Base models

Stronger constraints with $\rho_{GS} \neq 0$: (Here, m = 0, 1, 2)

Model	Z_n	X	H _u	p	$ ho_{GS}$
B _{III}	36	1	8 + 12 <i>m</i>	12	18
B _{IV}	36	3	4	8	18

Weaker constraint with $\rho_{GS} \neq 0$: Lots of cases, e.g., a Z_{22} symmetry[†]

Model	Z_n	X	Hu	р	$ ho_{GS}$
B _{IV}	22	2	2	11	12

[†]proposed and studied in K. S. Babu, I. Gogoladze, K. Wang hep-ph/0212245.

Examples with Z_n^R symmetries: Base models

Stronger constraints with $\rho_{GS}=0$: Some examples,

Model	Z_n^R	r	X	H _u	p
B _{III}	54	3	5	1 + 18m	10
B _{IV}	12	1	8	1 + 4 <i>m</i>	7

[†]Proposed and studied for the MSSM in H. M. Lee et al. 1102.3595, and was found in K. J. Bae, H. Baer, V. Barger, D. Sengupta 1902.10748 and H. Baer, V. Barger, D. Sengupta 1810.03713 to extend to base models B_{II} and B_{III} with suppression p=10, and to base models B_{II} and B_{IV} only with suppression p=7.

Examples with Z_n^R symmetries: Base models

Stronger constraints with $\rho_{GS} = 0$: Some examples,

Model	Z_n^R	r	X	H _u	р	
B _{III}	54	3	5	1 + 18m	10	
B _{IV}	12	1	8	1 + 4m	7	

Stronger constraints with $\rho_{GS} \neq 0$: As a special case, we found a Z_{24}^R symmetry with SU(5) invariance[†]

Model	Z_n^R	r	X	H_u	p	$ ho_{GS}$
B _{II}	24	1	11	1	10	18
B _{III}	24	1	5	1	10	18

We do not impose SU(5) invariance.

[†]Proposed and studied for the MSSM in H. M. Lee et al. 1102.3595, and was found in K. J. Bae, H. Baer, V. Barger, D. Sengupta 1902.10748 and H. Baer, V. Barger, D. Sengupta 1810.03713 to extend to base models B_{II} and B_{III} with suppression p=10, and to base models B_{II} and B_{IV} only with suppression p=7.

Examples with $Z_n^{(R)}$ symmetries: Base model extensions

Stronger constraints: Examples,

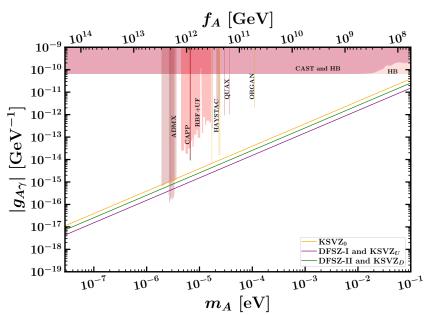
Base	Extension	Z_n^R	r	X	H _u	р	$ ho_{GS}$
B _I	$XYD\overline{D} + X^2L\overline{L}$	34	1	31	15	12	16
B _{II}	$Y^2D\overline{D}+Y^2L\overline{L}$	108	6	11	22 + 36m	20	0
B _{III}	$X^2Q\overline{Q} + X^2U\overline{U} + Y^2E\overline{E}$	42	0	1	8 + 14 <i>m</i>	14	18
B _{IV}	$XD\overline{D} + YL\overline{L}$	20	0	1	8	12	5

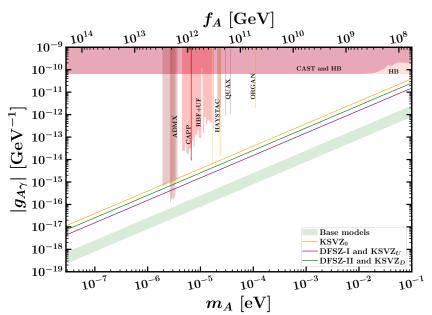
Examples with $Z_n^{(R)}$ symmetries: Base model extensions

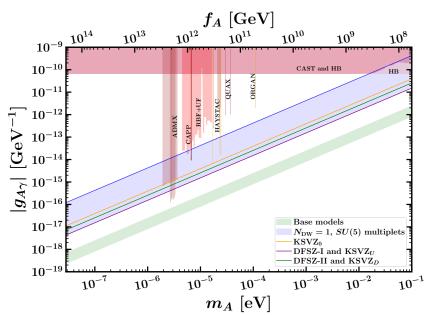
Stronger constraints: Examples,

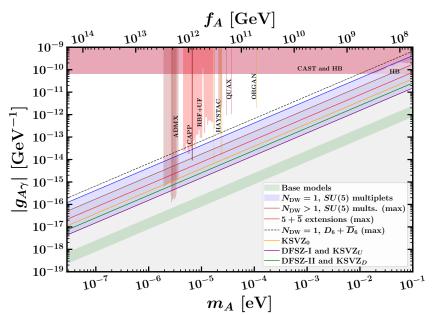
Base	Extension	Z_n^R	r	X	H_u	p	$ ho_{GS}$
B _I	$XYD\overline{D} + X^2L\overline{L}$	34	1	31	15	12	16
B _{II}	$Y^2D\overline{D} + Y^2L\overline{L}$	108	6	11	22 + 36m	20	0
B _{III}	$X^2Q\overline{Q} + X^2U\overline{U} + Y^2E\overline{E}$	42	0	1	8 + 14 <i>m</i>	14	18
B _{IV}	$XD\overline{D} + YL\overline{L}$	20	0	1	8	12	5

Can find an anomaly-free $Z_n^{(R)}$ symmetry protecting $U(1)_{PQ}$ for each model thus giving rise to a high-quality axion!

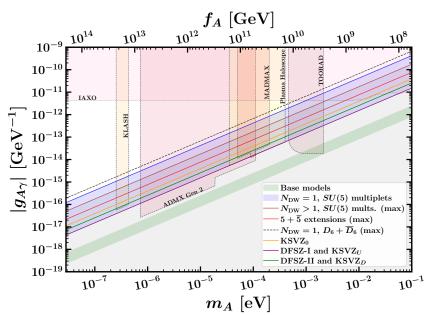




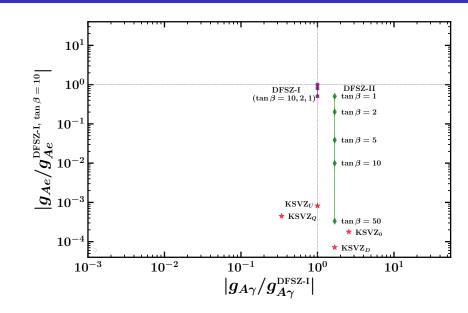




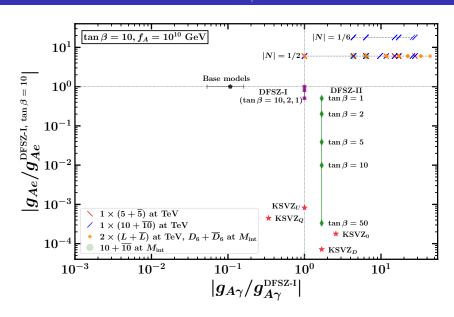
Axion-photon coupling (projections)

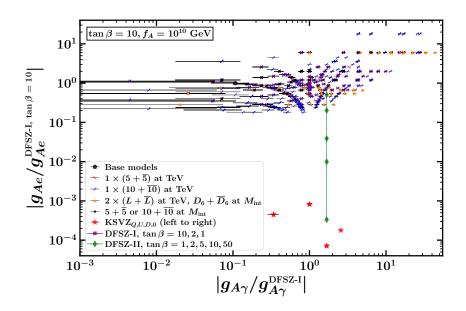


$|g_{Ae}/g_{Ae}^{ extsf{DFSZ-I}, aneta=10}|$ vs. $|g_{A\gamma}/g_{A\gamma}^{ extsf{DFSZ-I}}$



$|g_{Ae}/g_{Ae}^{ extsf{DFSZ-I,tan}\,eta=10}|$ vs. $|g_{A\gamma}/g_{A\gamma}^{ extsf{DFSZ-I}}$





Conclusion

Supersymmetry by itself addresses the electroweak hierarchy puzzle.

We considered extensions with extra vectorlike content that:

- have high-quality QCD axions within the reach of future axion searches
- \triangleright simultaneously solve the μ problem
- evade cosmological domain wall problem
- maintain gauge coupling unification

BACKUP SLIDES

Lightning review: The strong CP problem

Non-trivial QCD vacuum structure requires the term:

$$\mathcal{L}_{\mathsf{QCD}} \supset heta rac{oldsymbol{g}_{s}^{2}}{32\pi^{2}} G^{a\mu
u} ilde{G}_{\mu
u}^{a},$$

where the QCD vacuum angle θ is expected to be $\mathcal{O}(1)$.

"Everything not forbidden is compulsory."

However, experimentally:

$$|\theta| \lesssim 10^{-10}$$
.

Why so small? — strong CP problem

Peccei-Quinn (PQ) solution: promote θ to a dynamical field

Lightning review: Peccei-Quinn (PQ) solution

Consider a global $U(1)_{PQ}$ axial symmetry:

$$\partial_{\mu}j_{\rm PQ}^{\mu} = \underbrace{\frac{g_{\rm s}^2N}{16\pi^2}G^{{\rm a}\mu\nu}\,\tilde{G}_{\mu\nu}^{\rm a}}_{\rm QCD\ anomaly} + \underbrace{\frac{e^2E}{16\pi^2}F^{\mu\nu}\,\tilde{F}_{\mu\nu}}_{\rm EM\ anomaly}, \label{eq:gpq}$$

with left-handed fermions with PQ charge Q_f , $SU(3)_c$ index $T(R_f)$, and EM charge q_f contributing to:

$$N = \text{Tr}[Q_f T(R_f)],$$

 $E = \text{Tr}[Q_f q_f^2].$

 $U(1)_{PQ}$ can be spontaneously broken by scalars with PQ charge Q_s

$$\varphi_s\supset rac{v_s}{\sqrt{2}}\mathrm{e}^{ia_s/v_s}.$$

With $V^2 = \sum_s Q_s^2 v_s^2$, the axion field is given by:

$$A = \frac{1}{V} \sum_{s} Q_{s} v_{s} a_{s}.$$

Ensuring the axion is massless at tree-level by imposing:

$$\sum_{s} Y_s Q_s v_s^2 = 0,$$

where Y_s : weak hypercharge of φ_s . QCD vaccum term now becomes:

$$\mathcal{L}_{ ext{QCD}} \supset \left(heta + rac{A}{f_A}
ight) rac{g_s^2}{32\pi^2} G^{a\mu
u} \, ilde{G}_{\mu
u}^a,$$

with the axion decay constant

$$f_A \equiv \frac{V}{2N}$$
.

Under $U(1)_{PQ}$ transformations:

$$A \rightarrow A + (constant) f_A$$
,

Thus solving the strong CP problem.

Lightning review: Low-energy axion couplings

$$\mathcal{L}_{ ext{int}}^{A} \supset rac{1}{4} g_{A\gamma} A F^{\mu
u} ilde{F}_{\mu
u} - \sum_{f=e,n,p} i g_{Af} A \overline{\Psi}_f \gamma_5 \Psi_f$$

where,

$$\begin{split} g_{A\gamma} &= \frac{\alpha_e}{2\pi f_A} \left(c_\gamma - 1.92(4) \right), \\ g_{Ae} &= \frac{m_e}{f_A} \left[c_e + \frac{3\alpha_e^2}{4\pi^2} \left(c_\gamma \log \frac{f_A}{m_e} - 1.92(4) \log \frac{\text{GeV}}{m_e} \right) \right], \\ g_{An} &= \frac{m_n}{f_A} \left(-0.02(3) + 0.833(30) c_d - 0.406(21) c_u \right). \end{split}$$

with

$$c_{\gamma} = \frac{E}{N}, \quad c_e = \frac{Q_{\ell} + Q_{\overline{e}}}{2N}, \quad c_u = \frac{Q_q + Q_{\overline{u}}}{2N}, \quad c_d = \frac{Q_q + Q_{\overline{d}}}{2N}.$$

Axion can accidentally decouple from photons if $E/N \approx 1.92$.

Non-supersymmetric benchmark QCD axion models[†]

Benchmark	PQ charged fermions	N	c_{γ}	Cu	C _d	C _e
KSVZ ₀	$(3,1,0) + (\overline{3},1,0)$	$\frac{1}{2}$	0	0	0	0
KSVZ _D	$D+\overline{D}$	$\frac{1}{2}$	$\frac{2}{3}$	0	0	0
KSVZ _U	$U+\overline{U}$	$\frac{1}{2}$	8/3	0	0	0
KSVZ _Q	$Q+\overline{Q}$	1	<u>5</u> 3	0	0	0
DFSZ-I	SM fermions	3	8/3	$\begin{array}{c} c_{\beta}^{2} \\ \hline 3 \\ c_{\beta}^{2} \\ \hline 3 \end{array}$	$\begin{array}{c c} s_{\beta}^{2} \\ \hline 3 \\ s_{\beta}^{2} \\ \hline 3 \end{array}$	$\frac{s_{eta}^2}{3} \\ c_{eta}^2$
DFSZ-II	SM fermions	3	$\frac{2}{3}$	$\frac{c_{\beta}^2}{3}$	$\frac{s_{\beta}^2}{3}$	$-rac{c_{eta}^2}{3}$

where $\tan \beta = s_{\beta}/c_{\beta}$ is the ratio of Higgs VEVs in the DFSZ models.

[†]J. E. Kim Phys. Rev. Lett. **43**, 103 (1979); M. A. Shifman, A. I. Vainshtein, V. I. Zakharov Nucl. Phys. B **166**, 493-506 (1980); M. Dine, W. Fischler, M. Srednicki Phys. Lett. B **104**, 199-202 (1981); A. R. Zhitnitsky Sov. J. Nucl. Phys. **31**, 260 (1980)

Quixotic extension

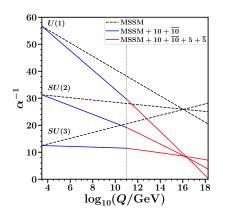
Consistent with gauge coupling unification, we can also consider

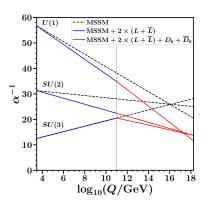
$$extbf{ extit{D}_6LL models: } 2 imes (L + \overline{L}) ext{ at TeV}, \ D_6 + \overline{D}_6 ext{ at } M_{ ext{int}} \sim 10^{11} ext{ GeV } (N_{ ext{DW}} = 1 ext{ possible})$$

where

$$D_6 + \overline{D}_6 = (\mathbf{6}, \mathbf{1}, 1/3) + (\overline{\mathbf{6}}, \mathbf{1}, -1/3)$$
 is an exotic quix pair

Gauge coupling unification





$N_{\rm DW}=1$ in base model extensions

$$\label{eq:NDW} \textit{N}_{\text{DW}} \equiv \text{minimum integer} \left(2\textit{N} \sum_{s} \frac{\textit{n}_{s}\textit{Q}_{s}\textit{v}_{s}^{2}}{\textit{V}^{2}} \right),$$

where $n_s \in \mathbb{Z}$.† Using the above formula:

$$\textit{N}_{\text{DW}} = \begin{cases} \text{minimum integer} \, |2\textit{Nn}_x| \, \, \text{in} \, \, B_{\text{II}}, \, \, B_{\text{II}}, \, \, B_{\text{IV}}, \, \, \text{and extensions}, \\ \text{minimum integer} \, |6\textit{Nn}_x| \, \, \text{in} \, \, B_{\text{III}} \, \, \text{and extensions}. \end{cases}$$

Clearly, $N_{\rm DW} \neq 1$ in all four base models. In the base model extensions,

For
$$N_{DW}=1$$
: $N= \begin{cases} \pm \frac{1}{2} \text{ in model extensions of } B_{II}, \ B_{III}, \ \text{and } B_{IV}, \\ \pm \frac{1}{6} \text{ in model extensions of } B_{III}. \end{cases}$

[†]See A. Ernst, A. Ringwald, C. Tamarit 1801.04906

Lower bound on the axion decay constant

The red giant bound on the axion-electron coupling

$$g_{Ae} > 1.3 \times 10^{-13},$$

sets the most stringent astrophysical constraint throughout our supersymmetric DFSZ axion model space:

$$f_A > \frac{\sin^2 \beta}{|N|} (3.9 \times 10^9 \text{ GeV}).$$

For large $\tan \beta$, the lower bound on the axion decay constant for

$$|N| = 1/6$$
: $f_A \gtrsim 2.3 \times 10^{10} \text{ GeV}$, $|N| = 1/2$: $f_A \gtrsim 7.8 \times 10^9 \text{ GeV}$, $|N| = 3$: $f_A \gtrsim 1.3 \times 10^9 \text{ GeV}$.

B and L violating operators

Renormalizable operators:

$$W_{ extsf{L-violating}} \ = \ H_u \ell + q \ell \overline{d} + \ell \ell \overline{e}, \qquad W_{ extsf{B-violating}} \ = \ \overline{u} \, \overline{d} \, \overline{d}.$$

The most common way of avoiding rapid proton decay due to these operators is to impose R-parity.

There are also non-renormalizable operators that mediate proton decay:

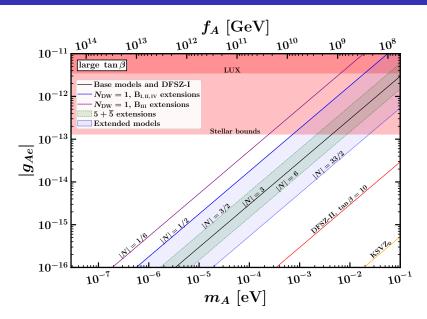
$$W = \frac{1}{M_P} qqq\ell + \frac{1}{M_P} \overline{u} \overline{u} \overline{d} \overline{e}.$$

The discrete charges $z_{\mathcal{O}} - 2r$ charges:

0	B _I	B_{II}, B_{IV}	B _{III}
$H_{u}\ell$	-r	-r	_ <i>r</i>
$\ell\ell\overline{e}, q\ell\overline{d}$	-2x+r	2x-r	-6x + 3r
$\overline{u}\overline{d}\overline{d}$	h-4x+4r	h+4x	h-12x+8r
$qqq\ell$	-h-r	-h-r	-h-r
$\overline{u}\overline{u}\overline{d}\overline{e}$	h-4x+5r	h+4x+r	h-12x+9r

Here, x, h are the Z_n^R charges of X, H_u superfields.

Axion-electron coupling



Axion-neutron coupling

