Inelastic deexcitation of the Hoyle State
 L. G. Sobotka

Big-Bang Nucleosynthesis Big Dud (as far as PT)

NOTE:
n, t and ${ }^{7} \mathrm{Be}$ are (beta) unstable but have lifetimes >> $\tau_{\text {BBN }}$
Only p, d, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$ (trace Li) $\rightarrow \mathrm{t} \gg \tau_{\text {BBN }}$

ALSO NOTE:

The PT starts at 1 and not 0

BECAUSE the n is unstable, i.e. $M_{n}>M_{p}+M_{e^{-}}+M_{v}$ How does nature produce free n's after BB?

With only a few exceptions:

stars, either in life or death, produce the rest of PT
What our sun does ($\sim 85 \%$ truth)
$2\left\{p+p \quad \rightarrow d+e^{+}+v+Q_{1}\right\}$
$2\left\{p+d \quad \rightarrow{ }^{3} \mathrm{He} \quad+Q_{2}\right\}$
With CNO process \rightarrow
allows for ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ NMR
With ${ }^{13} \mathrm{C} \ldots . . \rightarrow$ neutrons via
${ }^{13} \mathrm{C}+\alpha \rightarrow{ }^{17} \mathrm{O} \rightarrow{ }^{16} \mathrm{O}+\mathrm{n}$
these are the n's for s-process $\left\{{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{p}+\mathrm{Q}_{3}\right\}$
$4 \mathrm{r} \quad \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 \mathrm{v}+\mathrm{Q}_{\text {tot }}$
$\mathrm{Q}_{\text {tot }}=2 \mathrm{Q}_{1}+2 \mathrm{Q}_{2}+\mathrm{Q}_{3}=27.6 \mathrm{MeV}$

To repair part of the lie The sun also uses ${ }^{12} \mathrm{C}$ to catalyze The "CNO process" that does EXACTLY the same thing, i.e. $4 p \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 v+\mathrm{Q}_{\text {tot }}$ but ALSO Gives us ${ }^{13} \mathrm{C} \&{ }^{14,15} \mathrm{~N}$

Nuclei heavier than Fe come (mostly) from slow and fast n-capture processes

BUT where do the n's (post BBN) for s (low) and r (apid) n -capture come from?

Why: these resonances are doorways BUT so - so much more!

When/Where elements are made

Hoyle state - doorway to Periodic Table

$$
\begin{aligned}
&(\alpha+\alpha)+\alpha \leftrightarrows{ }^{8} \mathrm{Be}+\alpha \longleftrightarrow \\
&(5.57 \mathrm{ev} \rightarrow 118 \mathrm{as})
\end{aligned}{ }^{12} \mathrm{C}_{\text {Hoyle }}{ }_{(9.3 \mathrm{ev} \rightarrow 71 \mathrm{as})}
$$

EM decay 4/10,000
\rightarrow Hoyle's mostly just fall apart \rightarrow The measly drips \rightarrow P.T.

Because 〔dynamical \rightarrow there is an $\left[{ }^{8} \mathrm{Be}\right]_{\mathrm{eq}} \&\left[{ }^{12} \mathrm{C}_{\mathrm{Hoyle}}\right]_{\mathrm{eq}}$

Review and || route

J. W. Truran \& B.-Z. Kozlovsky, Ap. J. 158,1021 (1969).

Idea: microscopic reversibility \& detect " Y "

$$
{ }^{12} \mathrm{C}^{*} \longleftrightarrow \alpha+{ }^{8} \mathrm{Be} \leftrightarrow \alpha+2 \alpha
$$

IDEA: Detailed Balance \&

 rather than (n, n ') do ($n, " Y$ ")
Detailed Balance

In equilibrium each elementary process is in equilibrium with its reverse process

1. At equilibrium the one-way rates must be equal $\boldsymbol{\rightarrow}=\boldsymbol{\epsilon}$

$$
R_{\rightarrow}\left[1 / \mathrm{cm}^{3} s\right]=N_{n} N_{12 C}<\sigma_{\rightarrow} v>_{M B}=N_{n^{\prime}} N_{12 C^{*}}<\sigma_{\leftarrow} v>_{M B}=R_{\leftarrow}\left[1 / \mathrm{cm}^{3} s\right]
$$

2. The forward/backward Maxwellian averaged cross section ratio is just equal to the number ratio (or $\mathrm{K}_{\text {eq }}$) and thus equal to a partition function ratio.
\rightarrow The neutron partition functions drop out as $\mathrm{T} \& \mathrm{~m}$ are the same and all that remains are the spin degeneracy ratio and the difference in energies.

$$
\frac{\left\langle\sigma_{\leftarrow} v\right\rangle_{M B}}{\left\langle\sigma_{\rightarrow} v\right\rangle_{M B}}=\frac{N_{n} N_{12 C}}{N_{n^{\prime}} N_{12 C^{*}}}=\frac{q_{n} q_{12 C}}{q_{n^{\prime}} q_{12 C^{*}}}=\left(\frac{q_{n}}{q_{n^{\prime}}}\right)\left[\frac{q_{12 C}}{q_{12 C^{*}}}\right]=(1)\left[\frac{2 I+1}{2 I^{\prime}+1} e^{-\Delta E / k T}\right]
$$

3. BTW, the Maxwellian averaged cross sections are just.....

$$
\langle\sigma v\rangle_{M B}=(8 / \pi \mu)^{1 / 2}\left(\frac{1}{k T}\right)^{3 / 2 \infty} \int_{0}^{\infty} E \sigma(E) e^{-E / k T} d E
$$

Stripper foil at up to 4MV (variable)
D_{2} gas cell

$$
\mathrm{d}(\mathrm{~d}, \mathrm{n})^{3} \mathrm{He} ; \mathrm{Q}=3.27 \mathrm{MeV}
$$

TAMU's TPC (TexAT) moved to Ohio U. $E A L \rightarrow$ to detect " Y " 's
 from ${ }^{12} \mathrm{C}_{\mathrm{gs}}\left(\mathrm{n}\right.$, " Y ") ${ }^{12} \mathrm{C}_{\text {Hoyle }}$

\nearrow terminal $V: / E_{d} \& / E_{n}$.

Have to measure Hoyle decays Have to measure how many n's

AT-TPC CO_{2}

Tex-AT
Grisha's "toy"

CO_{2}

$10^{8} \mathrm{\gamma} / \mathrm{s}$ or $10^{6} \mathrm{n} / \mathrm{s}$ γ 's circularly polarised

$\sigma_{\gamma} \approx 130 \mathrm{keV}, \sigma_{\mathrm{n}} \approx 300 \mathrm{keV}$,

o

${ }^{12} \mathrm{C}$ or ${ }^{16} \mathrm{O}$

12

12
o
${ }^{4} \mathrm{He}$
${ }^{13} \mathrm{C}$

$$
12
$$

(Repeller) Cathode

12

Avalanche grids /micro patterned anode

Side view

Signal \uparrow

Intensity

Time

Signal \uparrow
 Intensity

Electronic time Evolving "picture"

Combining the 2D image and the 1D time projection \rightarrow 3D path of the track - angular distributions

Jack Bishop's brilliant analysis

Figure 4: ${ }^{12} \mathrm{C}\left(n, n_{0}\right)$ cross section (points) overlaid with multi-channel R-Matrix fit in red.

Figure ${ }^{5} \cdot{ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{n}$.) armose section (rointe) owerlaid with multi-channel R-Matrix fit in red

Figure 6: ${ }^{12} \mathrm{C}\left(n, n_{2}\right)$ cross section from this work (points) overlaid with multi-channel R-Matrix fit in red.

Figure 7: ${ }^{12} \mathrm{C}\left(n, c_{0}\right)$ cross section (points) overlaid with multi-channel R-Matrix fit in red.

Table 1: Expited atades in ${ }^{13} \mathrm{C}$ included in the R-Matrix fit in the estrophysical range of intereat

Spin parity	$E_{x}(\mathrm{MeV})$	$\Gamma_{\mathrm{n0}}(\mathrm{keV})$	$\Gamma_{\mathrm{m} 1}(\mathrm{keV})$	$\Gamma_{\mathrm{n} 2}(\mathrm{keV})$	$\Gamma_{\mathrm{mo}}(\mathrm{keV})$
$\frac{1}{2}^{+}$	13.28	0.2	2.7	104.8	15.5
$\frac{3}{3}$	13.28	146.5	71.6	44.7	291.2
$\frac{3}{2}-$	13.57	54	8.1	15.4	366.1
$\frac{\frac{7}{2}^{-}}{}$	13.76	401.9	106.6	0.7	201.8

The bottom lineto get amplification

 need: high [n] \& HOT

Neutron-upscattering enhancement of the triple-alpha process
J. Bishop*, ${ }^{1}$ C.E. Parker, ${ }^{1}$ G.V. Rogachev, ${ }^{1,2,3}$ S. Ahn ${ }^{\dagger},{ }^{1}$ E. Koshchiy, ${ }^{1}$ K. Brandenburg, ${ }^{4}$ C.R. Brune, ${ }^{4}$ R.J. Charity, ${ }^{5}$ J. Derkin, ${ }^{4}$ N. Dronchi, ${ }^{6}$ G. Hamad, ${ }^{4}$ Y. Jones-Alberty, ${ }^{4}$ Tz. Kokalova, ${ }^{7}$ T.N. Massey, ${ }^{4}$ Z. Meisel, ${ }^{4}$ E.V. Ohstrom, ${ }^{6}$ S.N. Paneru, ${ }^{4}$ E.C. Pollaco, ${ }^{8}$ M. Saxena, ${ }^{4}$ N. Singh, ${ }^{4}$ R. Smith, ${ }^{9}$ L.G. Sobotka, ${ }^{5,6,10}$ D. Soltesz, ${ }^{4}$ S.K. Subedi, ${ }^{4}$ A.V. Voinov, ${ }^{4}$ J. Warren, ${ }^{4}$ and C. Wheldon ${ }^{7}$

Is ${ }^{12} \mathrm{C}$ - the seed for the PT made by
 inelastic upscattering or EM decay?

?? (unlikely upscattering...) ??

But now astro folks who simulate stellar life and death (spirals) have the cross sections they need.

Note: not yet plumbed the ${ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O}$

Nature

