

MARIA MEHMOOD

OHIO STATE UNIVERSITY

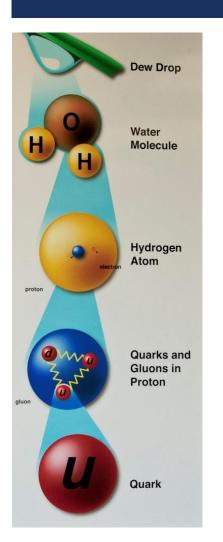
COLUMBUS, OH, USA

QUAID-I-AZAM UNIVERSITY

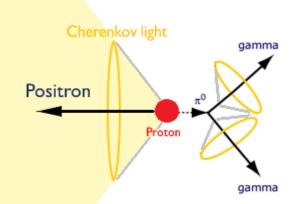
ISLAMABAD, PAKISTAN

based on work in collaboration with:

Mansoor-ur-Rehman


Qaisar Shafi

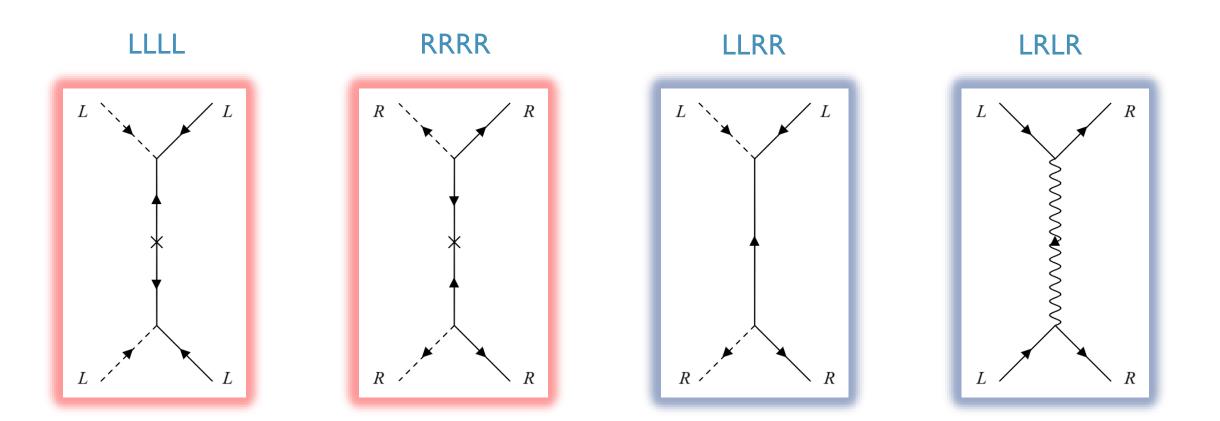
https://arxiv.org/abs/2010.01665


Journal reference: JHEP 02 (2021) 181

OVERVIEW

- Model: Flipped SU(5)
- Proton Decay in Flipped SU(5)
- Comparison of Flipped SU(5) and SU(5)
- Summary

MODEL: FLIPPED SU(5)


- \circ Gauge group: SU(5) x U(1)_X
- \circ Global U(I)_R symmetry and \mathbb{Z}_2 matter parity
- Superpotential:

$$\begin{split} W = & \kappa S \left(10_H^1 \overline{10}_H^{-1} - M^2 \right) \\ & + \frac{\lambda}{8} \, 10_H^1 10_H^1 5_h^{-2} + \frac{\overline{\lambda}}{8} \, \overline{10}_H^{-1} \overline{10}_H^{-1} \overline{5}_h^2 \\ & + \frac{1}{8} \, y_{ij}^{(d)} 10_i^1 10_j^1 5_h^{-2} + y_{ij}^{(u,\nu)} 10_i^1 \overline{5}_j^{-3} \overline{5}_h^2 + y_{ij}^{(e)} 1_i^5 \overline{5}_j^{-3} 5_h^{-2} + W_{HN} \end{split}$$

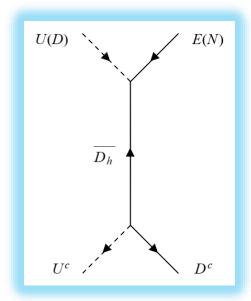
W_{HN}: Inverse seesaw mechanism

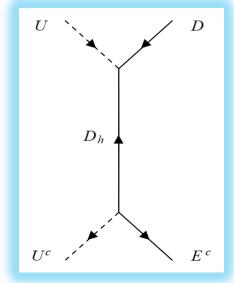
$SU(5)^{q(X)}$	$3_c \times 2_L \times 1_Y$	q(R)	\mathbb{Z}_2
		9(11)	
10 ¹	Q(3 2 1/6)		
	$D^{c}(\overline{3} \ 1 \ 1/3)$	0	-1
	N ^c (1 1 0)		
5 ⁻³	$U^{c}(\overline{3} \ 1 - 2/3)$		
	$L(1 \ 2 \ -1/2)$	0	-1
1 ⁵	E ^c (1 1 1)	0	-1
10 ¹ _H	Q _H (3 2 1/6)		
	$D_H^c(\bar{3} \ 1 \ 1/3)$	0	+1
	N_H^c (1 1 0)		
10_{H}^{-1}	$ \overline{\frac{Q_H}{D_H^c}} (\overline{3} 2 -1/6) $ $ \overline{D_H^c} (3 1 -1/3) $		
	$\overline{D_{\mu}^{c}}(3 \ 1 \ -1/3)$	0	+1
	N_{H}^{c} (1 1 0)		
5_h^{-2}	$D_h(3 \ 1 \ -1/3)$		
	$H_d(1 \ 2 \ -1/2)$	1	+1
$\overline{5}_h^2$	$\overline{D_h}(\overline{3} \ 1 \ 1/3)$		
	$H_u(1 \ 2 \ 1/2)$	1	+1
S	S(1 1 0)	1	+1

CHIRALITY TYPES

Solid line: fermion, Dashed line: boson, Wavy line: gauge boson L: left chiral, R: right chiral

PROTON DECAY IN FLIPPED SU(5):

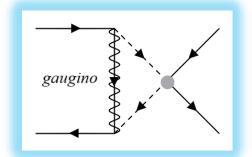

- o I- Dimension four operators (rapid proton decay) forbidden by \mathbb{Z}_2 matter parity and $\mathsf{U}(\mathsf{I})_\mathsf{R}$ symmetry
- o II-Dimension five operators (rapid proton decay) forbidden by $U(1)_R$ symmetry, no GUT scale mass terms for Higgs 5-plet $5_h\overline{5}_h$ and Higgs 10-plet $10_H\overline{10}_H$
- III-Dimension six operators (observable proton decay) of chirality type LLRR is mediated via color triplets of 5-plets and chirality type LRLR is mediated via gauge bosons
 - Proton decay interaction terms from W:

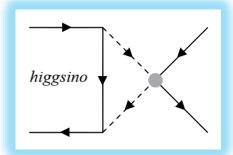

$$W \supset L\left(U_L y_D^{(u,\nu)}\right) Q \overline{D_h} + U^c \left(y_D^{(u,\nu)} V P^*\right) D^c \overline{D_h}$$
$$-\frac{1}{2} Q\left(V^* P y_D^{(d)} V^{\dagger}\right) Q D_h + U^c \left(U_L^{\dagger} y_D^{(e)}\right) E^c D_h$$

Proton decay interaction terms from K:

$$K \supset \sqrt{2} g_5 \left(-(U^c)^{\dagger} \mathcal{X}(U_L^T L) + (Q)^{\dagger} \mathcal{X}(V P^* D^c) + \text{h.c.} \right)$$

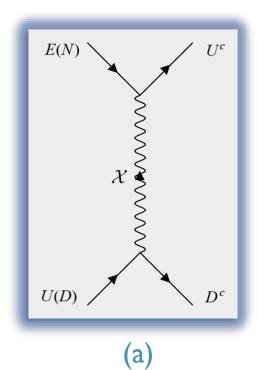
DIMENSION SIX: I-TWO FERMIONS TWO SCALARS OPERATOR

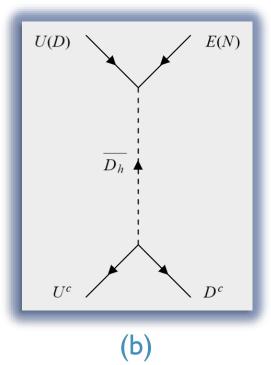


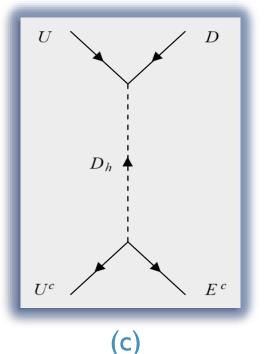

 Non-chirality flipping operator LLRR with two fermions and two scalars is dimension six operator!

$$\mathcal{L} \supset \frac{1}{m_P^2} \int d^4\theta \, \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \supset \frac{1}{m_P^2} \overline{\psi} \, \partial \!\!\!/ \psi \, \phi^* \phi$$

where


$$\Phi \supset \phi(x) + \sqrt{2}\theta\psi(x) - i\frac{1}{\sqrt{2}}\theta^2\partial^{\mu}\psi(x)\sigma_{\mu}\bar{\theta}.$$





- Needs a box diagram to become effective four fermi operator.
- This contribution is suppressed by loop factor

DIMENSION SIX: II- FOUR FERMIONS PROTON DECAY OPERATORS

Dimension six proton decay mediated via gauge bosons (a) and color triplets of 5-plet (b) and (c).

DIMENSION SIX: PROTON DECAY OPERATORS

Effective dimension six proton decay operators:

$$\mathcal{L}_{6}^{\text{eff}} = C_{6(1)}^{ijkl} (U^{c})_{i}^{\dagger} (D^{c})_{j}^{\dagger} Q_{k} L_{l} + C_{6(2)}^{ijkl} Q_{i} Q_{j} (U^{c})_{k}^{\dagger} (E^{c})_{l}^{\dagger},$$

$$\supset (U^{c})_{i}^{\dagger} (D^{c})_{j}^{\dagger} C_{6(1)}^{ijkl} (U_{k} E_{l} + (VD)_{k} (U_{PMNS}N)_{l})$$

$$+ (U_{i} (VD)_{j} + (VD)_{i} U_{j}) C_{6(2)}^{ijkl} (U^{c})_{k}^{\dagger} (E^{c})_{l}^{\dagger},$$

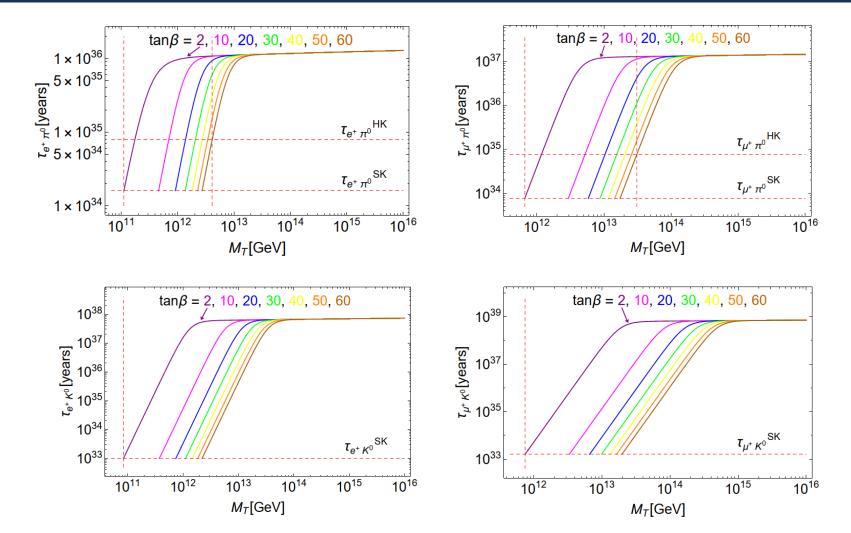
Wilson coefficients:

$$C_{6(1)}^{ijkl} = e^{i\varphi_j} \left(\frac{(U_L)_{li} V_{kj}^*}{M^2} + \frac{(V^{\dagger} y_D^{(u,\nu)})_{ji} (U_L y_D^{(u,\nu)})_{lk}}{M_{\tilde{\lambda}}^2} \right),$$

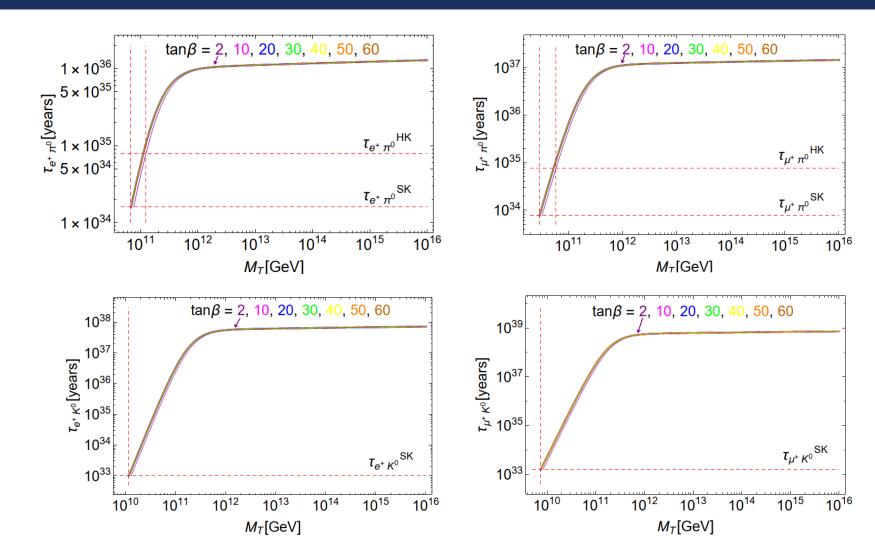
$$C_{6(2)}^{ijkl} = -\left(\frac{(V^* P y_D^{(d)} V^{\dagger})_{ij} (U_L^T y_D^{(e)})_{kl}}{2M_{\tilde{\lambda}}^2} \right).$$

where,

$$M_{\lambda} = \lambda \ M$$
 $M_{\bar{\lambda}} = \bar{\lambda} \ M$


DECAY RATES: I-CHARGED LEPTON (ELECTRON, MUON) CHANNELS

$$\Gamma_{p \to \pi^0 l_i^+} = k_{\pi} |C_{\pi^0 l_i^+}|^2 \left(A_{S_1}^2 \left| \frac{1}{M^2} + \left(\frac{m_u}{v_u} \right)^2 \frac{1}{M_{\tilde{\lambda}}^2} \right|^2 + A_{S_2}^2 \left| \frac{m_d}{v_d} \frac{m_{l_i}}{v_d} \frac{1}{M_{\tilde{\lambda}}^2} \right|^2 \right),
\Gamma_{p \to K^0 l_i^+} = k_K |C_{K^0 l_i^+}|^2 \left(A_{S_1}^2 \left| \frac{1}{M^2} + \left(\frac{m_u}{v_u} \right)^2 \frac{1}{M_{\tilde{\lambda}}^2} \right|^2 + A_{S_2}^2 \left| \frac{m_s}{v_d} \frac{m_{l_i}}{v_d} \frac{1}{M_{\tilde{\lambda}}^2} \right|^2 \right),$$


$$k_{\pi} = \frac{m_p A_L^2}{32\pi} \left(1 - \frac{m_{\pi}^2}{m_p^2} \right)^2, \quad k_K = \frac{m_p A_L^2}{32\pi} \left(1 - \frac{m_K^2}{m_p^2} \right)^2,$$

$$C_{\pi^0 l_i} = T_{\pi^0 l_i}(U_L)_{i1} V_{ud}^*, \qquad C_{K^0 l_i} = T_{K^0 l_i}(U_L)_{i1} V_{us}^*.$$

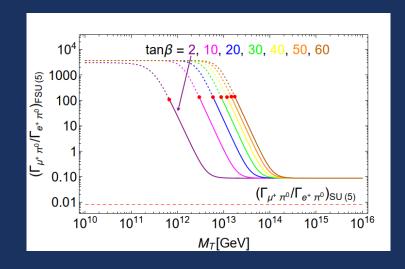
CASE I: $M_T = M_{\lambda} = M_{\bar{\lambda}}$

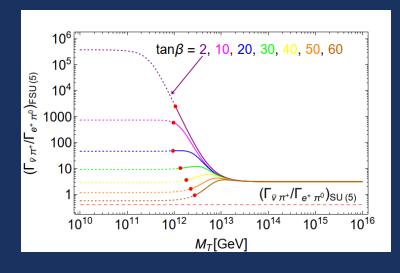
CASE II: $M_T = M_{\bar{\lambda}} << M_{\lambda}$

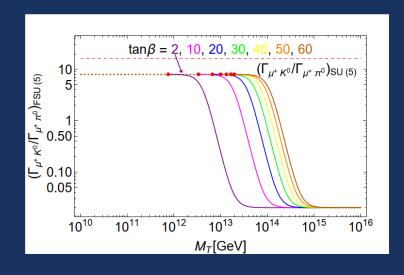
DECAY RATES: II-NEUTRAL LEPTON (NEUTRINO) CHANNELS

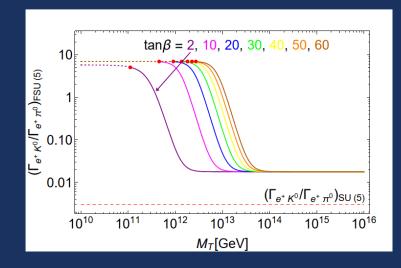

$$\Gamma_{p \to \pi^{+} \bar{\nu}_{i}} = k_{\pi} |T_{\pi^{+} \bar{\nu}}|^{2} A_{S_{1}}^{2} \left| \frac{(U_{N}^{*})_{i1}}{M^{2}} + V_{ud} \frac{m_{u}}{v_{u}} \sum_{j} \frac{(m^{(u)})_{j}}{v_{u}} \frac{(U_{N}^{*})_{ij} (V)_{j1}}{M_{\bar{\lambda}}^{2}} \right|^{2},$$

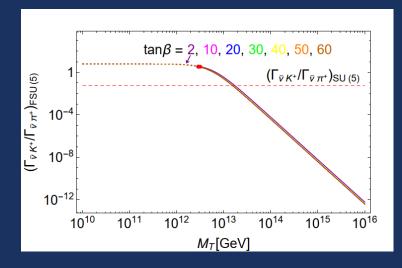
$$\Gamma_{p \to K^{+} \bar{\nu}_{i}} = k_{K} A_{S_{1}}^{2} \left| e^{i\varphi_{1}} T_{K^{+} \bar{\nu}}'(V^{*})_{ud} \frac{m_{u}}{v_{u}} \sum_{j} \frac{(m^{(u)})_{j}}{v_{u}} \frac{(U_{N}^{*})_{ij} (V)_{j2}}{M_{\bar{\lambda}}^{2}} \right|^{2},$$

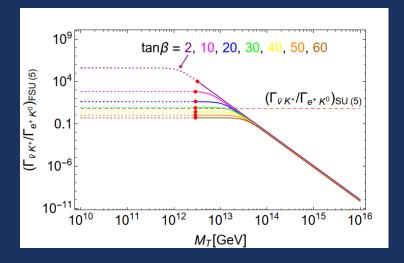

$$+ e^{i\varphi_{2}} T_{K^{+} \bar{\nu}}''(V^{*})_{us} \frac{m_{u}}{v_{u}} \sum_{j} \frac{(m^{(u)})_{j}}{v_{u}} \frac{(U_{N}^{*})_{ij} (V)_{j1}}{M_{\bar{\lambda}}^{2}} \right|^{2}.$$

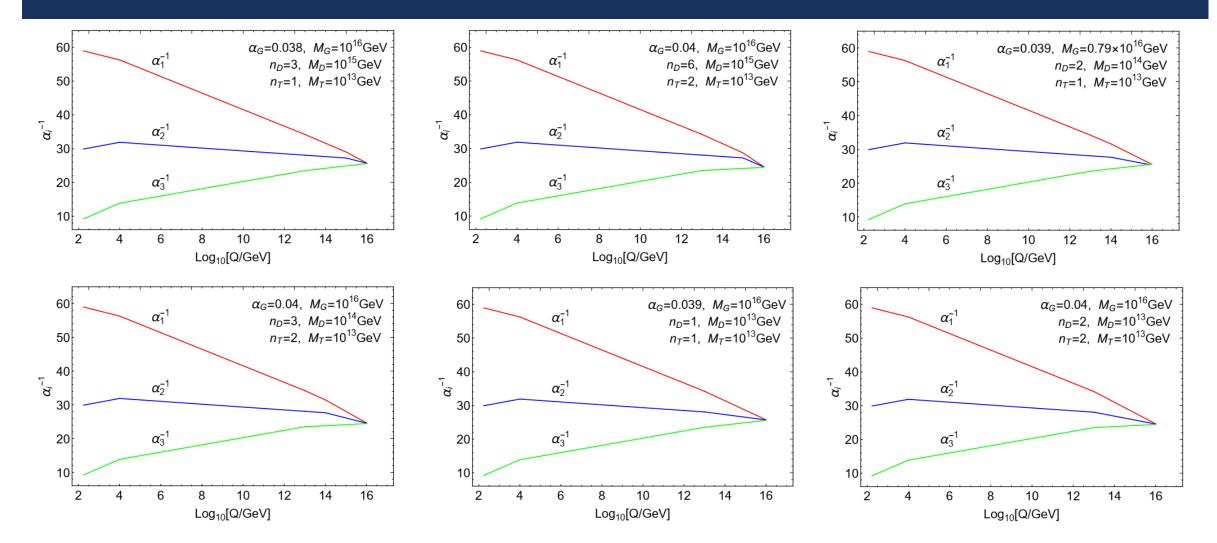

$M_T = M_{\bar{\lambda}}$, M_{λ} not involved!






FLIPPED SU(5) vs. SU(5)





GAUGE COUPLING UNIFICATION

SUMMARY

R-symmetric flipped SU(5) model.

R symmetry forbids rapid proton decay via dimension four or five operators.

Color triplets of intermediate mass from Higgs 5-plets mediate proton decay with lifetime that lie in the observable range of future experiments.

Anti-neutrino and Kaon channel plays a pivotal role in distinguishing our model from SU(5) and other flipped SU(5) models.

Flipped SU(5) model can be embedded into SO(10) group.

Thank you!

mehmood.maria786@gmail.com