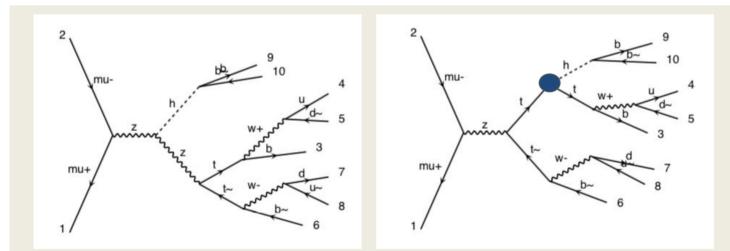


CP Violating Top Yukawa at a Multi TeV Muon Collider

Morgan Cassidy Zhongtian Dong, KC Kong, Ian Lewis, Yanzhe Zhang, Ya-Juan Zheng arXiv:2206.xxxx

Muon Colliders

- Why consider a muon collider?
 - cleaner collision environment compared to proton-proton collisions
 - high energy achievability compared to electron-positron collider
 - smaller energy loss due to synchrotron radiation
- Disadvantages:
 - muon decay
 - easily obtained, but difficulties with collimation

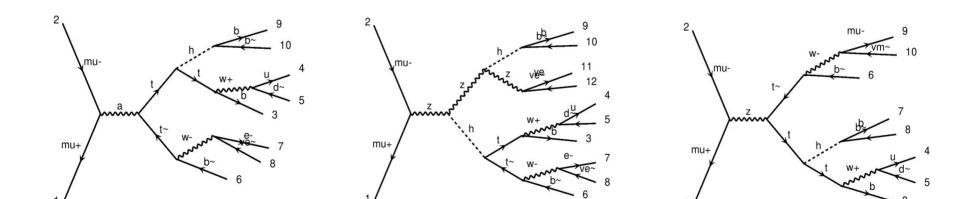


Top Yukawa Coupling

• Aim to explore CP tth violating coupling via tth, tth*vv* ,and tbh*µv*. The tth interaction Lagrangian term modeled by:

$$\mathcal{L} = -\frac{m_t}{v} \kappa_t \bar{t} (\cos\alpha + i\gamma_5 \sin\alpha) th$$

- alpha is the CP violating phase, kappa coupling strength
- Current constraints according to ATLAS: $|\alpha| \leq 43^{\circ}$

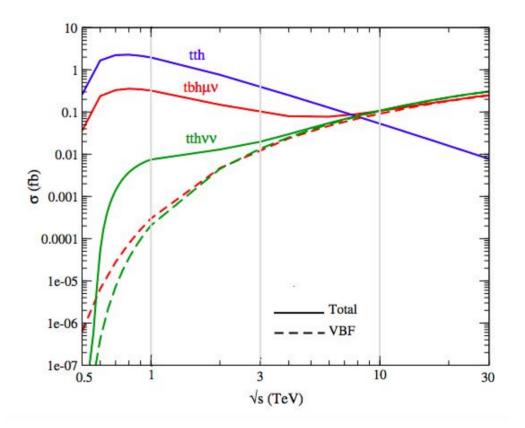


Representative Feynman diagrams for signal process tth with decay. The left diagram does not contain tth coupling. The right diagram tth coupling is marked in red.

Signals

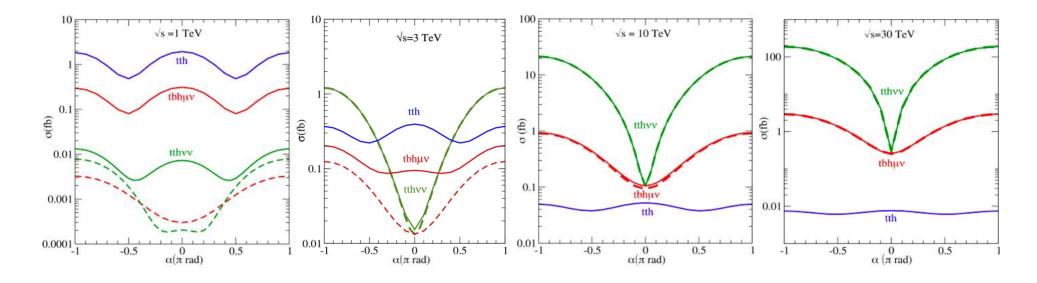
1.
$$\mu^{+}\mu^{-} \rightarrow t\bar{t}h$$

2. $\mu^{+}\mu^{-} \rightarrow t\bar{t}h\nu\bar{\nu}$
3. $\mu^{+}\mu^{-} \rightarrow t\bar{b}h\mu^{-}\bar{\nu}$
 $t \rightarrow bW^{+}, W^{+} \rightarrow jj$
 $\bar{t} \rightarrow \bar{b}W^{-}, W^{-} \rightarrow \ell^{-}\bar{\nu}\ell$
 $h \rightarrow b\bar{b}$



Cross Section versus √s for the Standard Model

• cross section versus c.o.m. energy from 500 GeV to 30 TeV for signals:


$$\mu^{+}\mu^{-} \to t\bar{t}h$$

$$\mu^{+}\mu^{-} \to t\bar{t}h\nu_{\ell}\bar{\nu_{\ell}}$$

$$\mu^{+}\mu^{-} \to tbh\mu\nu$$

• All processes generated through MadGraph5_aMC@NLO.

Cross Section versus CP Phase

- Cross section varying with cp phase from -π to π for signal processes at 1, 3, 10 and 30 TeV. Dashed lines show VBF contributions for tthvv and tbhµv.
- Cross section sensitive to CP phase at high energies

Benchmark Luminosities

• Using an estimated cross section at 10 TeV of 1 fb

$$L \gtrsim \frac{5\,\mathrm{years}}{\mathrm{time}} \left(\frac{\sqrt{s}_{\mu}}{10\,\mathrm{TeV}}\right)^2 2 \cdot 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

\sqrt{s} (TeV)	L (fb^{-1})
1	100
3	1000
10	10,000
30	10,000

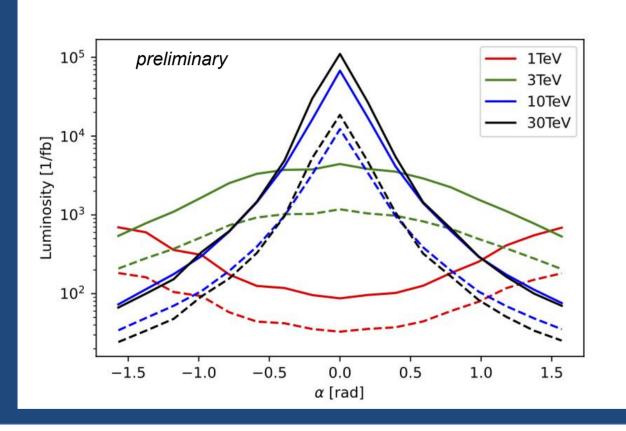
Table:Correspondingluminosities foreach of the fourbenchmarkenergies.

Muon Colliders, Jean Pierre Delahaye et. al, <u>https://arxiv.org/pdf/1901.06150.pdf</u> Snowmass, muon forum, <u>https://snowmass21.org/energy/muon_forum</u>

2σ Exclusion & 5σ Discovery

- Log likelihood ratio used to determine 5σ discovery and 2σ exclusion.
- Likelihood function following Poisson distribution: $L(x|n) = \frac{x^n}{n!}e^{-x}$

$$\sigma_{dis} \equiv \sqrt{-2 \ln \left(\frac{L(B|Sig+B)}{L(Sig+B|Sig+B)}\right)}$$


$$\sigma_{exc} \equiv \sqrt{-2 \ln \left(\frac{L(Sig + B|B)}{L(B|B)}\right)}$$

Top: formula used to calculate 5σ significance

Bottom: formula used to calculate 2σ significance

Luminosity versus CP phase

Solid Lines:

Corresponding luminosity required to achieve 5σ discovery for a particular α value.

Dashed Lines:

Luminosity required for 2σ exclusion of particular α value.

9

2σ Exclusion on CP phase

Bands give 2σ exclusion on α using benchmark luminosities. -5% systematics


Solid Lines:

Combined signal cross section before cuts normalized to SM. **Dashed Bands:**

Projected bounds at 95% CL normalized to SM.

Approximate values: $|\alpha| \leq 47^{\circ}$ at 1 TeV $|\alpha| \leq 9^{\circ}$ at 10 TeV $|\alpha| \leq 3^{\circ}$ at 30 TeV

3 TeV relatively independent

2σ Exclusion on CP phase cont.

α bounds at 95% CL	Channel	Collider	
$ \alpha \lesssim 36^{\circ}$	$dileptonic \ t\bar{t}(h \to b\bar{b})$	HL -LHC	
$ lpha \lesssim 25^{\circ}$	$t\bar{t}(h \rightarrow \gamma \gamma)$ combination	HL-LHC	
$ \alpha \lesssim 3^{\circ}$	$dileptonic \ t\bar{t}(h \to b\bar{b})$	100 TeV FCC	
$ lpha \lesssim 9^{\circ}$	semileptonic $t\bar{t}(h \rightarrow b\bar{b})$	10 TeV muon collider	
$ \alpha \lesssim 3^{\circ}$	semileptonic $t\bar{t}(h \rightarrow b\bar{b})$	30 TeV muon collider	

Table: bounds at 95% CL for α at different colliders.

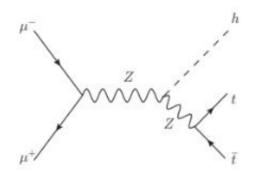
Conclusion

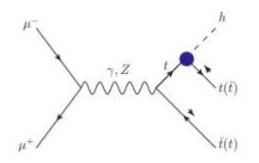
- Muon collider new type of lepton collider with advantages and trade-offs
- Studying processes (tth, tth*vv*, tbh*µv*) with CP violating top-Higgs coupling at a muon collider
- Due to VFB, tth*vv* is dominate signal at high energies
- Cross section sensitive to magnitude of CP Phase

Cross Section Parameterization for tthvv

• Can parameterize σ to understand dependence on α :

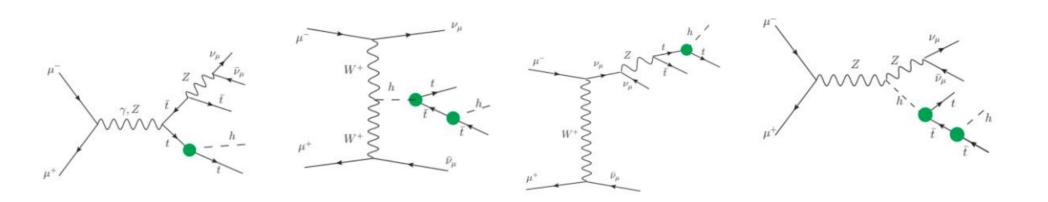
 $\sigma_{t\bar{t}h\bar{\nu}\nu}(\alpha) = C^4 \cos^4\alpha + C^3 \cos^3\alpha + C^2 \cos^2\alpha + C^1 \cos\alpha + C^0$

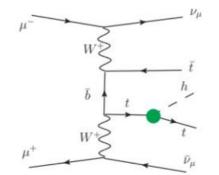

	$t\bar{t}h u\bar{ u}$				
$\sqrt{s}~({\rm TeV})$	1	3	10	30	
C^4	$-1.35\cdot10^{-4}$	$-4.41\cdot10^{-3}$	0.019	-0.43	
C^3	$7.04\cdot 10^{-5}$	-0.013	-0.17	-0.13	
C^2	$7.44\cdot 10^{-3}$	0.24	2.16	8.09	
C^1	$-3.00\cdot10^{-3}$	-0.58	-10.43	-93.23	
C^0	$2.89\cdot 10^{-3}$	0.38	8.53	86.00	

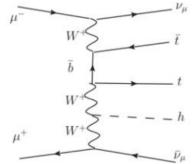

- for fixed √s can determine which type of diagram dominates
- For the SM value, α = 0, have large destructive interference.
- $\alpha = \pi$, becomes constructive.

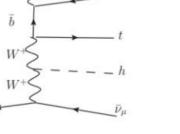
tth diagrams

• Can parameterize tth cross section as:

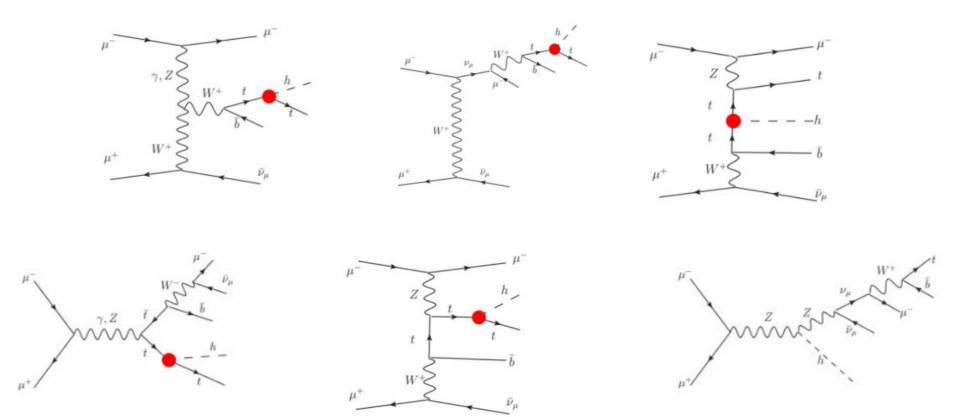

$$\sigma_{t\bar{t}h}(\alpha) = C^2 cos^2 \alpha + C^1 cos \alpha + C^0$$







tthvv diagrams



tbhµv diagrams

10