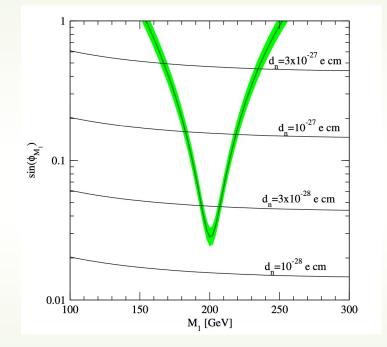
The Neutron Electric Dipole Moment Experiment at Oak Ridge National Laboratory

Cameron Blake Erickson , 2022 PPC Conference, Washington University June 8th

Talk Outline

- nEDM Motivation
- Outline of an nEDM Measurement
- Neutron production for the nEDM@SNS Experiment
- nEDM@SNS Precession Measurement
- Known Systematic Effects
- Summary

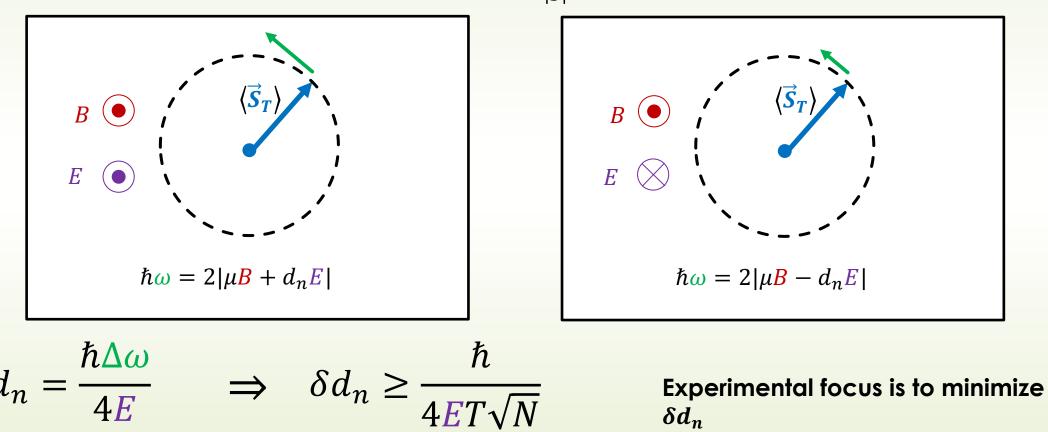

Neutron Electric Dipole Moment (nEDM) Motivation

- Nonrelativistically, an electric dipole moment, \vec{d} , can be defined by $H = -(\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E})$ Fx
- Nonzero Permanent Electric Dipole Moments directly probe CP violation

Spin EDM Time Reversal Spin EDM

- CP violation in the SM is not sufficient to be consistent with the observed matter anti-matter asymmetry
- Measuring the Neutron EDM is a strategic choice experimentally

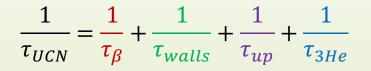
Example of nEDM constraints. MSSM parameters from the baryon asymmetry:

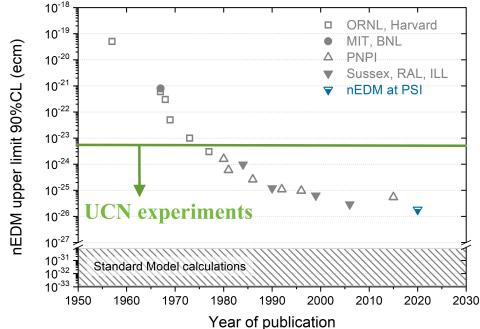

Li, Profumo, and Ramsey-Musolf, 2009

Standard Model Prediction	Current Bound	Target Precision of nEDM@SNS
$d_n \sim 1 \times 10^{-32} \mathrm{e} \cdot \mathrm{cm}$	$d_n < 1 \times 10^{-26} \mathrm{e\cdot cm}$	$d_n < 2 - 3 \times 10^{-28} \mathrm{e} \cdot \mathrm{cm}$

Outline of an nEDM Measurement

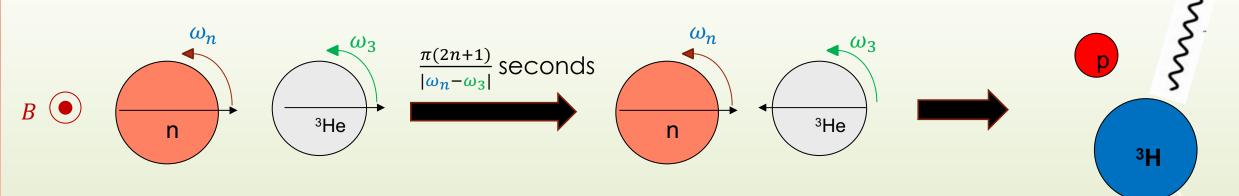
• uses basic nuclear magnetic resonance (NMR) techniques.


Nonrelativistic Hamiltonian: $H = -\frac{\vec{s}}{|s|} \cdot (\mu B + d_n E)$


(picture assumes d_n>0)

Neutron Production for nEDM@SNS Experiment

- Ultra Cold Neutrons (UCNs) are defined as having speeds ≤ 8 m/s (or energies $\leq 3 \times 10^{-7}$ eV)
- UCNs are completely reflected by many materials
- nEDM@SNS will measure UCNs produced by down scattering cold neutrons in a superfluid bath at 450 mK.
- UCNs remain in the superfluid bath until lost to beta decay, cell wall losses, up scattering, or 3He absorption.


• Estimated to achieve 170 UCNs/cc

(image adapted from Wikipedia)

nEDM@SNS Experiment Precession Measurement To measure $\Delta \omega$ (with the neutrons still in the superfluid!):

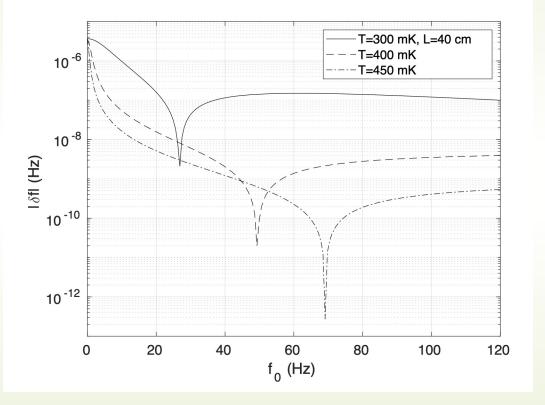
- Spin polarized ³He is added to the superfluid bath with the concentration, $x_3 = \frac{n_3}{n_4 + n_3} = 10^{-10}$
- During precession, the reaction products $n + {}^{3}He \rightarrow p + {}^{3}H + 764$ keV scintillate
- Reaction cross section maximized for spins antiparallel, minimized for spins parallel (min ≤1% of max).
- Since ³He EDM is negligible the difference in optical frequencies is the difference in neutron frequencies

Some Known Systematic Effects

- Magnetic Field Stability
 - For target sensitivity, require coherent (with the electric field) fluctuations smaller than $\delta B \leq 10^{-16}$ T
- Motional Magnetic Field

$$\vec{B_v} \simeq -\frac{\vec{v}}{c^2} \times \vec{E}$$
 $\frac{v}{c} = 10^{-8} \Longrightarrow \delta B \sim 10^{-10} \text{ T}$

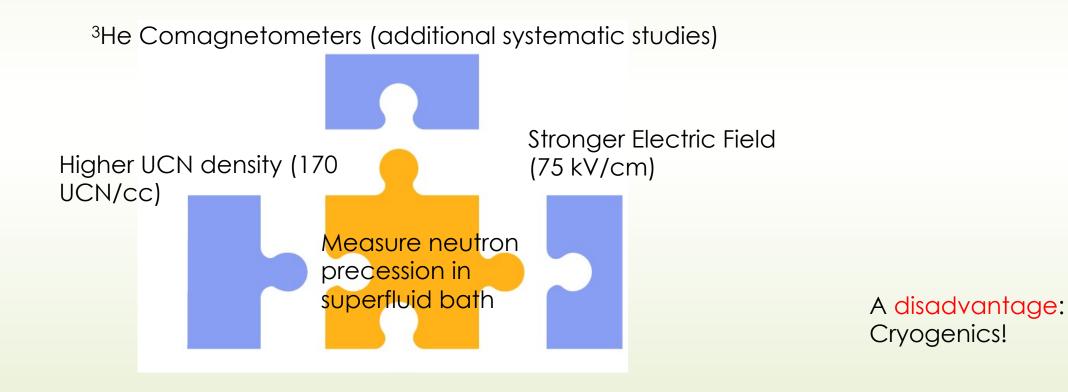
 Bloch-Siegert induced false EDM effect (also called geometric phase)


$$\delta \omega = \frac{\gamma^2 B_1^2}{2 \left(\omega_0 - \omega_r \right)}$$

Example assuming simple circular motion

$$B_1^2 = \left| \vec{B}_v + \vec{B}_r \right|^2 \implies$$

$$\delta\omega = -\frac{\gamma^2 \left(\frac{\partial B_z}{\partial z}\right) \frac{E}{c^2} \omega_r R}{2 \left(\omega_0 - \omega_r\right)}.$$


False EDM effect for the ³He

(C.M. Swank, A.K. Petukhov and R. Golub Phys. Rev. **A 93** (2016) 062703.)

Summary

- The nEDM is sensitive to CP violation and is thus of interest to BSM physics
- The nEDM@SNS aims to improve the sensitivity current sensitivity limit by 1 to 2 orders of magnitude

